Advertisement

Surveys in Geophysics

, Volume 35, Issue 6, pp 1333–1359 | Cite as

Estimating Runoff Using Hydro-Geodetic Approaches

  • Nico SneeuwEmail author
  • Christof Lorenz
  • Balaji Devaraju
  • Mohammad J. Tourian
  • Johannes Riegger
  • Harald Kunstmann
  • András Bárdossy
Article

Abstract

Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.

Keywords

Hydro-geodesy Runoff from hydro-geodetic methods Gravity recovery and climate experiment satellite mission (graceSatellite altimetry Continental-scale water budgets Water storage changes 

Notes

Acknowledgments

We gratefully acknowledge the support of projects SN13/1, BA1150/11, KU2090/1 by the Deutsche Forschungsgemeinschaft (dfg) in the framework of the priority program SPP1257 Mass Transport and Mass Distribution in the System Earth. We would like to thank the following data providers: Global Runoff Data Centre (grdc) www.bafg.de/GRDC, Global Precipitation Climatology Project (gpcp) precip.gsfc.nasa.gov, European Centre for Medium-Range Weather Forecasts (ecmwf) www.ecmwf.int, University of Texas at Austin, Center for Space Research (csr) www.csr.utexas.edu/, NASA’s Earth Science Division and Goddard Earth Sciences (ges) Data and Information Services Center (disc) ldas.gsfc.nasa.gov. Further thanks are due to Dr. Diego Miralles (University of Bristol) for kindly providing the gleam evapotranspiration data. All graphics have been produced with the Generic Mapping Tools (gmt) gmt.soest.hawaii.edu (Wessel and Smith 1991).

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak JE, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Alsdorf D, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:RG2002. doi: 10.1029/2006RG000197 Google Scholar
  3. Asrar G, Kaye JA, Morel P (2001) NASA research strategy for earth system science: Climate component. Bull Am Meteorol Soc 82(7):1309–1329. doi: 10.1175/1520-0477(2001)82<1309:NRSFES>2.3.CO;2
  4. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein a, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434. doi: 10.1175/1520-0477(2001) 082<2415:FaNTTS>2.3.CO;2
  5. Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32(16). doi: 10.1029/2005GL022814
  6. Bettadpur S (2007) Gravity recovery and climate experiment, level-2 gravity field product user handbook. Center for Space Research, The University of Texas at Austin GRACE 327-734:CSR-GR-03-01Google Scholar
  7. Bettadpur S (2012) UTCSr level-2 processing standards document (for level-2 product release 0005). Technical report rev. 4.0, Center for Space research, The University of Texas at AustinGoogle Scholar
  8. Birkett CM (1998) Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239. doi: 10.1029/98WR00124 CrossRefGoogle Scholar
  9. Birkinshaw SJ, O’Donnell GM, Moore P, Kilsby CG, Fowler HJ, Berry PAM (2010) Using satellite altimetry data to augment flow estimation techniques on the mekong river. Hydrol Process 24(26):3811–3825. doi: 10.1002/hyp.7811 CrossRefGoogle Scholar
  10. Bjerklie DM, Dingman SL, Vörösmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278(1–4):17–38. doi: 10.1016/S0022-1694(03)00129-X CrossRefGoogle Scholar
  11. Chahine MT (1992) GEWEX: the global energy and water cycle experiment. Eos Trans Am Geophys Union 73(2):9–14. doi: 10.1029/91EO00007 CrossRefGoogle Scholar
  12. Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan Y, Ek M, Betts A (1996) Modeling of land-surface evaporation by four schemes and comparison with fife observations. J Geophys Res 101:7251–7268. doi: 10.1029/95JD02165 CrossRefGoogle Scholar
  13. Chen JL, Wilson CR, Tapley BD (2010) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46(12). doi: 10.1029/2010WR009383
  14. Cheng M, Ries J (2013) Monthly estimates of C 20 from 5 SLR satellites based on GRACE RL05 models. GRACE technical note 7, Center for Space Research, The University of Texas at AustinGoogle Scholar
  15. CLIVAR Scientific Steering Group and World Climate Research Programme (1995) CLIVAR, a study of climate variability and predictability: science plan, vol 89. World Climate Research ProgrammeGoogle Scholar
  16. Coe MT, Birkett CM (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the lake Chad basin. Water Resour Res 70:W10205. doi: 10.1029/2003WR002543
  17. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2013) GFZ GRACE level-2 processing standards document (for level-2 product release 0005). Scientific technical report rev. 1.1, GFZ German Research Centre for GeosciencesGoogle Scholar
  18. da Silva JS, Calmant S, Seyler F, Filho OCR, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens Environ 114(10):2160–2181. doi: 10.1016/j.rse.2010.04.020 CrossRefGoogle Scholar
  19. Derber JC, Parrish DF, Lord SJ (1991) The new global operational analysis system at the national meteorological center. Weather Forecast 6:538–547. doi: 10.1175/1520-0434(1991)006<0538:TNGOAS>2.0.CO;2
  20. Dorigo WA, Wagner W, Hohensinn R, Hahn S, Paulik C, Xaver A, Gruber A, Drusch M, Mecklenburg S, van Oevelen P, Robock A, Jackson T (2011) The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrol Earth Syst Sci 15(5):1675–1698. doi: 10.5194/hess-15-1675-2011 CrossRefGoogle Scholar
  21. Durand M, Fu LL, Lettenmaier D, Alsdorf D, Rodriguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98(5):766–779. doi: 10.1109/JPROC.2010.2043031 CrossRefGoogle Scholar
  22. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale \(ET_{{\rm a}}\) model. J Geophys Res 108(D22):8851. doi: 10.1029/2002JD003296
  23. Fekete BM, Looser U, Pietroniro A, Robarts RD (2012) Rationale for monitoring discharge on the ground. J Hydrometeorol 13(6):1977–1986. doi: 10.1175/JHM-D-11-0126.1 CrossRefGoogle Scholar
  24. Fellous JL (2014) Global climate observing system. In: Njoku E (ed) Encyclopedia of remote sensing, encyclopedia of earth sciences series. Springer, New York, pp 254–257. doi: 10.1007/978-0-387-36699-9_56
  25. Ferguson C, Sheffield J, Wood E, Gao H (2010) Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int J Remote Sens 31:3821–3865. doi: 10.1080/01431161.2010.483490 CrossRefGoogle Scholar
  26. Fersch B, Kunstmann H, Bárdossy A, Devaraju B, Sneeuw N (2012) Continental-scale basin water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations. J Hydrometeorol 1589–1603. doi: 10.1175/jhm-d-11-0143.1
  27. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100(2):252–264. doi: 10.1016/j.rse.2005.10.027 CrossRefGoogle Scholar
  28. Frappart F, Ramillien G, Ronchail J (2013) Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int J Climatol 33(14):3029–3046. doi: 10.1002/joc.3647 CrossRefGoogle Scholar
  29. Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. International geophysics series, vol 69. Academic Press, San DeigoGoogle Scholar
  30. Getirana ACV (2010) Integrating spatial altimetry data into the automatic calibration of hydrological models. J Hydrol 387:244–255. doi: 10.1016/j.jhydrol.2010.04.013 CrossRefGoogle Scholar
  31. Getirana ACV, Peters-Lidard C (2013) Estimating water discharge from large radar altimetry datasets. Hydrol Earth Syst Sci 17(3):923–933. doi: 10.5194/hess-17-923-2013 CrossRefGoogle Scholar
  32. Gilchrist WG (2000) Statistical modelling with quantile functions. Chapman & Hall, LondonCrossRefGoogle Scholar
  33. Gleick PH, Cooley H, Famiglietti JS, Lettenmaier DP, Oki T, Vörösmarty CJ, Wood EF (2013) Improving understanding of the global hydrologic cycle. In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Dordrecht, pp 151–184. doi: 10.1007/978-94-007-6692-1_6
  34. Gupta H, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4:135–143. doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) CrossRefGoogle Scholar
  35. Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of predictions in ungauged basins (PUB)—a review. Hydrol Sci J 58(6):1–58. doi: 10.1080/02626667.2013.803183 CrossRefGoogle Scholar
  36. ICGEM (2013) International centre for global earth models. (Accessed 11 June 2013)Google Scholar
  37. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954. doi: 10.1038/nature09396 CrossRefGoogle Scholar
  38. Koblinsky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurement of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848. doi: 10.1029/93WR00542 CrossRefGoogle Scholar
  39. Kopp TJ, Kiess RB (1996) The air force global weather central cloud analysis model. In: 15th conference on weather analysis and forecasting, pp 220–222Google Scholar
  40. Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for ncep weather and climate models. J Geophys Res 104:569–585. doi: 10.1029/1999JD900232 Google Scholar
  41. Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob’ river discharge from TOPEX/poseidon satellite altimetry (1992–2002). Remote Sens Environ 93(12):238–245. doi: 10.1016/j.rse.2004.07.007 CrossRefGoogle Scholar
  42. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  43. Lawford R, Strauch A, Toll D, Fekete B, Cripe D (2013) Earth observations for global water security. Curr Opin Environ Sustain 5(6):633–643. doi: 10.1016/j.cosust.2013.11.009 aquatic and marine systemsCrossRefGoogle Scholar
  44. Leon J, Calmant S, Seyler F, Bonnet MP, Cauhop M, Frappart F, Filizola N, Fraizy P (2006) Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. J Hydrol 328(34):481–496. doi: 10.1016/j.jhydrol.2005.12.006 CrossRefGoogle Scholar
  45. Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L et al (2004) Streamflow and water balance intercomparisons of four land surface models in the North American land data assimilation system project. J Geophys Res Atmos (1984–2012) 109(D07):S91. doi: 10.1029/2003JD003517
  46. Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50(2):1131–1151. doi: 10.1002/2013WR014581 CrossRefGoogle Scholar
  47. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46(W11):517. doi: 10.1029/2009WR008564 Google Scholar
  48. Lorenz C (2009) Applying stochastic constraints on time-variable shape grace data. University of Stuttgart, StuttgartGoogle Scholar
  49. Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13:1397–1420. doi: 10.1175/JHM-D-11-088.1 CrossRefGoogle Scholar
  50. Lorenz C, Devaraju B, Tourian MJ, Riegger J, Kunstmann H, Sneeuw N (2014) Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances. J Hydrometeorol. doi: 10.1175/JHM-D-13-0157.1
  51. Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15(2):453–469. doi: 10.5194/hess-15-453-2011 CrossRefGoogle Scholar
  52. Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. Available at: http://swat.tamu.edu/media/1312/moriasimodeleval.pdf
  53. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536. doi: 10.1016/j.rse.2011.02.019 CrossRefGoogle Scholar
  54. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1. A discussion of principles. J Hydrol 10:282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  55. Paiva RCD, Buarque DC, Collischonn W, Bonnet MP, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modelling of the Amazon river basin. Water Resour Res 49:1226–1243. doi: 10.1002/wrcr.20067 CrossRefGoogle Scholar
  56. Papa F, Güntner A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Geophys Res Lett 35(11). doi: 10.1029/2008GL033857
  57. Papa F, Durand F, Rossow WB, Rahman A, Bala SK (2010) Satellite altimeter-derived monthly discharge of the Ganga–Brahmaputra river and its seasonal to interannual variations from 1993 to 2008. J Geophys Res 115(C12):013. doi: 10.1029/2009JC006075 Google Scholar
  58. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  59. Riegger J, Tourian MJ (2014) Characterization of runoff-storage relationships by satellite gravimetry and remote sensing. Water Resour Res. doi: 10.1002/2013WR013847
  60. Riegger J, Tourian M, Devaraju B, Sneeuw N (2012) Analysis of grace uncertainties by hydrological and hydro-meteorological observations. J Geodyn 59:16–27. doi: 10.1016/j.jog.2012.02.001 CrossRefGoogle Scholar
  61. Roads JO, Chen SC, Guetter AK, Georgakaos KP (1994) Large-scale aspects of the United States hydrologic cycle. Bullet Am Meteorol Soc 75:1589–1610. doi: 10.1175/1520-0477(1994)075<1589:LSAOTU>2.0.CO;2
  62. Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004a) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20). doi: 10.1029/2004GL020873
  63. Rodell M, Houser P, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J, Walker J, Lohmann D, Toll D (2004b) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394CrossRefGoogle Scholar
  64. Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of ground-water depletion in india. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  65. Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens Environ 115(8):1850–1865. doi: 10.1016/j.rse.2011.03.009 CrossRefGoogle Scholar
  66. Salvucci GD, Gentine P (2013) Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data. Proc Natl Acad Sci 110:6287–6291. doi: 10.1073/pnas.1215844110 CrossRefGoogle Scholar
  67. Schlosser CA, Houser PR (2007) Assessing a satellite-era perspective of the global water cycle. J Clim 20:1316–1338. doi: 10.1175/JCLI4057.1 CrossRefGoogle Scholar
  68. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) gpcc’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoret Appl Climatol 115:15–40. doi: 10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  69. Seo KW, Wilson CR, Han SC, Waliser DE (2008) Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J Geophys Res 113(B03):405. doi: 10.1029/2006JB004747 Google Scholar
  70. Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36(7). doi: 10.1029/2009GL037338
  71. Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-interim: new ECMWF reanalysis products. ECMWF Newsl 110:25–35Google Scholar
  72. Southwood D (1999) Introducing the ‘Living Planet’ programme—the ESA strategy for earth observation. Technical report, European Space Agency, ESA Publications Division, Noordwijk, The NetherlandsGoogle Scholar
  73. Syed T, Famiglietti J, Chambers D (2009) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol 10:22–40. doi: 10.1175/2008JHM993.1 CrossRefGoogle Scholar
  74. Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi river basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32(L24):404. doi: 10.1029/2005GL024851 Google Scholar
  75. Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34(19). doi: 10.1029/2007GL031254
  76. Tourian MJ, Sneeuw N, Bárdossy A (2013) A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resour Res 49:1–13. doi: 10.1002/wrcr.20348 CrossRefGoogle Scholar
  77. Trenberth K, Asrar G (2014) Challenges and opportunities in water cycle research: WCRP contributions. Surv Geophys 35(3):515–532. doi: 10.1007/s10712-012-9214-y CrossRefGoogle Scholar
  78. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769. doi: 10.1175/JHM600.1 CrossRefGoogle Scholar
  79. Vergnes JP, Decharme B (2012) A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrol Earth Syst Sci Discuss 9:3889–3908. doi: 10.5194/hess-16-3889-2012 CrossRefGoogle Scholar
  80. Vinukollu RK, Wood EF, Ferguson CR, Fisher JB (2011) Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches. Remote Sens Environ 115(3):801–823. doi: 10.1016/j.rse.2010.11.006 CrossRefGoogle Scholar
  81. Wahr J, Molenaar M, Bryan F (1998) The time-varibility of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi: 10.1029/98JB02844
  82. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179:1499–1515. doi: 10.1111/j.1365-246X.2009.04355.x CrossRefGoogle Scholar
  83. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72(41):441–446CrossRefGoogle Scholar
  84. Wilson W, Bates P, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett 34(L15):404. doi: 10.1029/2007GL030156 Google Scholar
  85. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  86. Zaitchik BF, Rodell M, Olivera F (2010) Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour Res 46:W06507Google Scholar
  87. Zakharova EA, Kouraev AV, Cazenave A, Seyler F (2006) Amazon river discharge estimated from TOPEX/poseidon altimetry. C R Geosci 338:188–196. doi: 10.1016/j.crte.2005.10.003 CrossRefGoogle Scholar
  88. Zhou X, Zhang Y, Wang Y, Zhang H, Vaze J, Zhang L, Yang Y, Zhou Y (2012) Benchmarking global land surface models against the observed mean annual runoff from 150 large basins. J Hydrol 470:269–279. doi: 10.1016/j.jhydrol.2012.09.002

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nico Sneeuw
    • 1
    Email author
  • Christof Lorenz
    • 2
  • Balaji Devaraju
    • 1
  • Mohammad J. Tourian
    • 1
  • Johannes Riegger
    • 3
  • Harald Kunstmann
    • 2
    • 4
  • András Bárdossy
    • 3
  1. 1.Institute of GeodesyUniversity of StuttgartStuttgartGermany
  2. 2.Institute of Meteorology and Climate Research, Atmospheric Environmental ResearchKarlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  3. 3.Institute for Modelling Hydraulic and Environmental SystemsUniversity of StuttgartStuttgartGermany
  4. 4.Institute for GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations