Surveys in Geophysics

, Volume 35, Issue 5, pp 1123–1154 | Cite as

Survey of Geomagnetic Observations Made in the Northern Sector of Russia and New Methods for Analysing Them

  • Alexei Gvishiani
  • Renata Lukianova
  • Anatoly Soloviev
  • Andrei Khokhlov


An overview of the geomagnetic observations made in the northern part of Russia is presented from a historical perspective. Several stations were deployed on the territory of the former Soviet Union during the International Geophysical Year, 1957–1958, with the active participation and guidance of the Interagency Geophysical Committee which is inherited by the Geophysical Center of the Russian Academy of Sciences (GC RAS). In the 1990s, the majority of these stations, especially those in the remoter regions, were closed. Nowadays, the geomagnetic network, including the observatories of the INTERMAGNET program, has been restored. Examples of high-latitude geomagnetic variations in the Russian longitudinal sector are shown, and maps and trends of the secular variation over the territory of Russia presented. Particular attention is paid to the automated processing of data and to the analysis methods used. To process the growing amount of high-resolution geomagnetic data, sophisticated mathematical methods based on the fuzzy logic approach and new discrete mathematical analysis algorithms have been developed. The formal methods and algorithms for recognizing both artificial and natural disturbances in the magnetograms are described.


Geomagnetic observations INTERMAGNET Data processing Geomagnetic activity Mathematical methods Fuzzy logic 



The collection and availability of geomagnetic data at INTERMAGNET:; WDC Kyoto:; WDC Edinburgh:; WDC Moscow:; SPIDR:; SuperMag:; RapidMag:; Arctic and Antarctic Research Institute:; Polar Geophysical Institute:, Geophysical Center RAS:; Russian-Ukrainian Geomagnetic Data Center: are gratefully acknowledged. This work was supported by the Program #44 of the Presidium of the RAS.


  1. Akasofu SI, Chapman S (1972) Solar terrestrial physics (monographs on Physics). Oxford University Press, EnglandGoogle Scholar
  2. Atlas of the Earth’s Magnetic Field (2013) In: Gvishiani A, Frolov A, Lapshin V (eds) Publ GC RAS, Moscow. doi: 10.2205/2013BS011_Atlas_MPZ
  3. Baumjohann W, Glassmeier K-H (1984) The transient response mechanism and Pi2 pulsations at substorm onset: review and outlook. Planet Space Sci 32:1361–1370CrossRefGoogle Scholar
  4. Bogoutdinov SR, Gvishiani AD, Agayan SM, Solovyev AA, Kihn E (2010) Recognition of disturbances with specified morphology in time series. Part 1: spikes on magnetograms of the worldwide INTERMAGNET network. Izvestiya Phys Solid Earth 46(11):1004–1016CrossRefGoogle Scholar
  5. Boteler DH, Pirjola RJ, Nevanlinna H (1998) The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv Space Res 22(1):17–27CrossRefGoogle Scholar
  6. Chapman S, Bartels J (1940) Geomagnetism. Oxford University Press, ClarendonGoogle Scholar
  7. Chulliat A, Hulot G, Newitt LR (2010a) Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the North magnetic pole during the 1990s. J Geophys Res 115(B07101). doi: 10.1029/2009JB007143
  8. Chulliat A, Hulot G, Newitt LR, Orgeval JJ (2010b) What caused recent acceleration of the North magnetic pole drift? EOS Trans AGU 91(51):501–502. doi: 10.1029/2010EO510001 CrossRefGoogle Scholar
  9. Davis TN, Sugiura M (1966) Auroral electrojet activity index AE and its universal time variations. J Geophys Res 71:785–790CrossRefGoogle Scholar
  10. Demina IM, Petrova AA (2010) Quality of the main geomagnetic field secular variation forecast and its influence on the consolidated maps of the anomalous magnetic field in Russia. Vestnik KRAUNZ Earth Sci 1(15):206–215 (in Russian)Google Scholar
  11. Feldstein YI, Starkov GV (1967) Dynamics of auroral belt and geomagnetic disturbances. Planet Space Sci 15:209–215CrossRefGoogle Scholar
  12. Finlay CC, Dumberry M, Chulliat A, Pais A (2010a) Short timescale core dynamics: theory and observations. Space Sci Rev 155:177–218CrossRefGoogle Scholar
  13. Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A et al (2010b) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183:1216–1230. doi: 10.1111/j.1365-246X.2010.04804 CrossRefGoogle Scholar
  14. Gjerloev JW (2009) A global ground-based magnetometer initiative. EOS Trans AGU 90(27):230–231CrossRefGoogle Scholar
  15. Gvishiani AD, Dubois JO (2002) Artificial intelligence and dynamic systems for geophysical applications. Springer, New YorkCrossRefGoogle Scholar
  16. Gvishiani AD, Agayan SM, Bogoutdinov ShR, Ledenev AV, Zlotniki J, Bonnin J (2003) Mathematical methods of geoinformatics. II. Fuzzy-logic algorithms in the problems of abnormality separation in time series. Cybern Syst Anal 39(4):555–563CrossRefGoogle Scholar
  17. Gvishiani AD, Agayan SM, Bogoutdinov ShR (2008a) Fuzzy recognition of anomalies in time series. Dokl Earth Sci 421(1):838–842CrossRefGoogle Scholar
  18. Gvishiani AD, Agayan SM, Bogoutdinov ShR, Graeva EM, Zlotnicki J, Bonnin J (2008b) Recognition of anomalies from time series by fuzzy logic methods. Russ J Earth Sci 10(ES1001). doi: 10.2205/2007ES000278
  19. Gvishiani AD, Agayan SM, Bogoutdinov ShR, Zlotnicki J, Bonnin J (2008c) Mathematical methods of geoinformatics: III. Fuzzy comparisons and recognition of anomalies in time series. Cybern Syst Anal 44(3):309–323CrossRefGoogle Scholar
  20. Gvishiani AD, Agayan SM, Bogoutdinov ShR, Soloviev AA (2010) Discrete mathematical analysis and geological and geophysical applications. Vestnik KRAUNZ Earth Sci 2(16):109–125 (in Russian)Google Scholar
  21. Hakluyt G (1937) English voyagers in Moscow state in XVI century. English Translation, Rubinshtein NL (ed), L, 308 p (in Russian)Google Scholar
  22. Hargreaves JK (1992) The solar-terrestrial environment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Hellman G (1889) The beginning of magnetic observations. Terr Magn Electr 4:73–86CrossRefGoogle Scholar
  24. Kalinin YuD (1957) Organization of magnetic observatory network in USSR for the period of 40 years. Izvestiya Academy of Sciences, USSR Geophysics series No 12, pp 1469–1477Google Scholar
  25. Keiling A (2009) Alfven waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci Rev 142:73–156. doi: 10.1007/s11214-008-9463-8 CrossRefGoogle Scholar
  26. Kelley MC (1989) The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press, San DiegoGoogle Scholar
  27. Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, Cambridge reprinted in 1996Google Scholar
  28. Kleimenova NG, Zelinskii NR, Kozyreva OV, Malysheva LM, Solov’ev AA, Bogoutdinov ShR (2013) Pc3 geomagnetic pulsations at near-equatorial latitudes at the initial phase of the magnetic storm of April 5, 2010. Geomagn Aeron 53(3):313–320CrossRefGoogle Scholar
  29. Korhonen JV et al (2007) Magnetic anomaly map of the world (and associated DVD), scale: 1:50,000,000, 1st edn. Commission for the Geological Map of the World, ParisGoogle Scholar
  30. Korte M, Mandea M (2008) Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space 60:937–948Google Scholar
  31. Kulchinsky RG, Kharin EP, Shestopalov IP, Gvishiani AD, Agayan SM, Bogoutdinov ShR (2010) Fuzzy logic methods for geomagnetic events detections and analysis. Russ J Earth Sci 11(RE4003). doi: 10.2205/2009ES000371
  32. Lesur V, Maus S (2006) A global lithospheric magnetic field model with reduced noise level in the Polar Regions. Geophys Res Lett 33:L13304. doi: 10.1029/2006GL025826 CrossRefGoogle Scholar
  33. Love J, Chulliat A (2013) An international network of magnetic observatories. EOS Trans AGU 94(42):373–374. doi: 10.1002/2013EO420001 CrossRefGoogle Scholar
  34. Lukianova R (2003) Magnetospheric response to sudden changes in solar wind dynamic pressure inferred from polar cap index. J Geophys Res 108(A12):1428. doi: 10.1029/2002JA009790 CrossRefGoogle Scholar
  35. Lukianova R, Mursula K, Kozlovsky A (2012) Response of the polar magnetic field intensity to the exceptionally high solar wind streams in 2003. Geophys Res Lett 39:L04101. doi: 10.10029/2011GL050420 CrossRefGoogle Scholar
  36. Lyatsky W, Tan A, Lyatskaya S (2006) Monitoring the auroral electrojet from polar cap stations. J Geophys Res 111:A07202. doi: 10.1029/2004JA010989 Google Scholar
  37. Mandea M, Papitashvili V (2009) Worldwide geomagnetic data collection and management. Eos Trans AGU 90(45):409–424. doi: 10.1029/2009EO450001
  38. Manoj C, Kuvshinov A, Maus S, Luhr H (2006) Ocean circulation generated magnetic signals. Earth Planets Space 58:429–437CrossRefGoogle Scholar
  39. Mansurov SM (1969) New evidence of the relationship between magnetic field in space and on the earth. Geomagn Aeron (Engl translation) 9:768–773Google Scholar
  40. Newell PT, Gjerloev JW (2011) Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res 116(A12). doi: 10.1029/2011JA016779
  41. Newitt LR, Chulliat A, Orgeval JJ (2009) Location of the North magnetic pole in April 2007. Earth Planets Space 61(6):703–710CrossRefGoogle Scholar
  42. Papitashvili VO, Rich FJ (2002) High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction. J Geophys Res 107(A8):1198. doi: 10.1029/2001JA000264 CrossRefGoogle Scholar
  43. Potapov AS, Khomutov SYu, Rasson JL (2011) CRENEGON project and its impact on magnetic observations in NIS countries. Vestn Otd nauk Zemle 3:NZ5005. doi: 10.2205/2011NZ000107 (in Russian)CrossRefGoogle Scholar
  44. Raspopov OM, Kopytenko YuA, Efendieva VV, Mescheryakov VV (2009) Development of geomagnetic research in Russia from the beginning of observations till 1918. Hist Earth Sci 2(1):18–43 (in Russian)Google Scholar
  45. Richmond AD, Kamide Y (1988) Mapping electrodynamic features of the high-latitude ionosphere from localized observations: technique. J Geophys Res 93(A6):5741–5759CrossRefGoogle Scholar
  46. Rishbeth H (ed) (2008) Guide to the World Data Center System. Accessed 1 Oct 2013
  47. Ross TJ (1995) Fuzzy logics with engineering application. McGraw-Hill, New YorkGoogle Scholar
  48. Schrijver CJ, Rabanal JP (2013) A survey of customers of space weather information. Space Weather 11(9):529–541. doi: 10.1002/swe.20092 Google Scholar
  49. Sidorov RV, Soloviev AA, Bogoutdinov ShR (2012) Application of the SP algorithm to the INTERMAGNET magnetograms of the disturbed geomagnetic field. Izvestiya Phys Solid Earth 48(5):410–414CrossRefGoogle Scholar
  50. Soloviev AA, Bogoutdinov ShR, Agayan SM, Gvishiani AD, Kihn E (2009) Detection of hardware failures at INTERMAGNET observatories: application of artificial intelligence techniques to geomagnetic records study. Russ J Earth Sci 11:ES2006. doi: 10.2205/2009ES000387 CrossRefGoogle Scholar
  51. Soloviev AA, Agayan SM, Gvishiani AD, Bogoutdinov ShR, Chulliat A (2012a) Recognition of disturbances with specified morphology in time series: part 2. spikes on 1-s magnetograms. Izvestiya Phys Solid Earth 48(5):395–409CrossRefGoogle Scholar
  52. Soloviev AA, Chulliat A, Bogoutdinov ShR, Gvishiani AD, Agayan SM, Peltier A, Heumez B (2012b) Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory. Earth Planets Space 64(9):743–752. doi: 10.5047/eps.2012.03.004 CrossRefGoogle Scholar
  53. Soloviev AA, Bogoutdinov ShR S, Gvishiani AD, Kulchinskiy R, Zlotnicki J (2013) Mathematical tools for geomagnetic data monitoring and the INTERMAGNET Russian segment. Data Sci J 12:114–119. doi: 10.2481/dsj.WDS-019 CrossRefGoogle Scholar
  54. Thomson AWP, Dawson EB, Reay SJ (2011) Quantifying extreme behaviour in geomagnetic activity. Space Weather 9:S10001. doi: 10.1029/2011SW000696 CrossRefGoogle Scholar
  55. Tomita S, Nose M, Iyemori T, Toh H, Takeda M, Matzka J, Bjornsson G, Saemundsson T, Janzhura A, Troshichev O, Schwarz G (2011) Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices. Ann Geophys 29:673–678. doi: 10.5194/angeo-29-673-2011 CrossRefGoogle Scholar
  56. Troitskaya VA (1953) Short-period disturbances in the electro-magnetic field of the Earth. Dokl Akad Nauk SSSR Novaya Seriya 91(2):241Google Scholar
  57. Vokhmyanin MV, Ponyavin DI (2013) Sector structure of the interplanetary magnetic field in the nineteenth century. Geophys Res Lett 40(14):3512–3516. doi: 10.1002/grl.50749 CrossRefGoogle Scholar
  58. Weimer DR (1995) Models of high-latitude electric potentials derived with a least error fit of spherical harmonic functions. J Geophys Res 100(A10):19595–19607CrossRefGoogle Scholar
  59. Wilcox JM (1972) Inferring the interplanetary magnetic field by observing the polar geomagnetic field. Rev Geophys 10:1003CrossRefGoogle Scholar
  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  61. Zelinskiy NR, Kleimenova NG, Kozyreva OV, Agayan SM, Bogoutdinov ShR, Soloviev AA (2014) Algorithm for recognizing Pc3 geomagnetic pulsations in 1-s data from INTERMAGNET equatorial observatories. Izvestiya Phys Solid Earth 50(2):240–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexei Gvishiani
    • 1
  • Renata Lukianova
    • 1
    • 2
  • Anatoly Soloviev
    • 1
  • Andrei Khokhlov
    • 1
    • 3
  1. 1.Geophysical CenterRussian Academy of SciencesMoscowRussia
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  3. 3.Institute of Earthquake Prediction Theory and Mathematical GeophysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations