Surveys in Geophysics

, Volume 35, Issue 6, pp 1417–1440 | Cite as

Structure and State of Stress of the Chilean Subduction Zone from Terrestrial and Satellite-Derived Gravity and Gravity Gradient Data

  • B. D. Gutknecht
  • H.-J. Götze
  • T. Jahr
  • G. Jentzsch
  • R. Mahatsente
  • St. Zeumann
Article

Abstract

It is well known that the quality of gravity modelling of the Earth’s lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north–south and west–east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.

Keywords

Density modelling Finite element method GOCE Gravity gradients Gravitational potential energy State of stress Subduction 

References

  1. Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009Google Scholar
  2. ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108:2328. doi:10.1029/2002JB001771,B7 Google Scholar
  3. Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and GEOSAT geodetic mission altimetry. J Geophys Res 103:8129–8137CrossRefGoogle Scholar
  4. Babeyko AY, Sobolev SV (2008) High-resolution numerical modelling of stress distribution in visco-elasto-plastic subducting slabs. Lithos 103:205–216. doi:10.1016/j.lithos.2007.09.015 CrossRefGoogle Scholar
  5. Bejar-Pizarro M, Socquet A, Armijo R, Carrizo D, Genrich J, Simons M (2013) Andean structural control in interseismic coupling in the North Chile subduction zone. Nat Geosci 6:462–467. doi:10.1038/ngeo1802 CrossRefGoogle Scholar
  6. Bonnardot MA, Hassani R, Tric E, Ruellan E, Régnier M (2008) Effect of margin curvature on plate deformation in a 3-D numerical model of subduction zones. Geophys J Int 173:1084–1094. doi:10.1111/j.1365-246X.2008.03752.x CrossRefGoogle Scholar
  7. Boutelier DA, Oncken O (2010) Role of the plate margin curvature in the plateau buildup: consequences for the central Andes. J Geophys Res 115:B04402. doi:10.1029/2009JB006296 Google Scholar
  8. Braitenberg C, Mariani P, Pivetta T (2011) GOCE observations in exploration geophysics. In: Ouwehand L (ed) Proceedings of 4th Int GOCE User Workshop, Munich, Germany, Mar 31—Apr 1, 2011, ESA SP-696, ISBN 978-92-9092-260-5. European Space Agency, NoordwijkGoogle Scholar
  9. Coblentz DD, Richardson RM, Sandiford M (1994) On the gravitational potential of the Earth’s lithosphere. Tectonics 13(4):929–945. doi:10.1029/94TC01033 CrossRefGoogle Scholar
  10. Comte D, Pardo M, Dorbath L, Haessler H, Rivera L, Cisternas A, Ponce L (1994) Determination of seismogenic interplate contact zone and crustal seismicity around Antofagasta, Northern Chile using local data. Geophys J Int 116:553–561. doi:10.1111/j.1365-246X.1994.tb03279.x CrossRefGoogle Scholar
  11. Dahlen FA (1984) Noncohesive critical Coulomb wedges: an exact solution. J Geophys Res 89(B12):10125–10133. doi:10.1029/JB089iB12p10125 CrossRefGoogle Scholar
  12. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G, Drinkwater MR, Rummel R, von Steiger R (eds) Earth gravity field from space—from Sensors to earth sciences. Space Sciences Series of ISSI, 17:419–432, Kluwer Academic Publishers, Dordrecht. ISBN: 1-4020-1408-2Google Scholar
  13. Flesch LM, Kreemer C (2010) Gravitational potential energy and regional stress and strain rate fields for continental plateaus: examples from the central Andes and Colorado Plateau. Tectonophysics 482:182–192. doi:10.1016/j.tecto.2009.07.014 CrossRefGoogle Scholar
  14. Förste C, Bruinsma SL, Flechtner F et al (2012) A preliminary update of the Direct Approach GOCE Processing and a new release of EIGEN-6C. AGU 2012 Fall Meeting (San Francisco, USA 2012)Google Scholar
  15. Forsyth D, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J Int 43(1):163–200. doi:10.1111/j.1365-246X.1975.tb00631.x CrossRefGoogle Scholar
  16. Ghosh A, Holt W, Flesch LM, Haines AJ (2006) Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology 34(5):321–324. doi:10.1130/G22071.1 CrossRefGoogle Scholar
  17. Götze HJ, Kirchner A (1997) Interpretation of gravity and geoid in the Central Andes between 20 and 29 S. J South Am Earth Sci 10:179–188. doi:10.1016/S0895-9811(97)00014-X CrossRefGoogle Scholar
  18. Götze HJ, Lahmeyer B, Schmidt S, Strunk S, Araneda M (1990) Central Andes gravity data base. EOS Trans AGU 71(16):401–407. doi:10.1029/90EO00148 CrossRefGoogle Scholar
  19. Götze HJ, Meurers B, Schmidt S, Steinhauser P (1991) On the isostatic state of the Eastern Alps and the Central Andes—a statistical comparison. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Special Paper 265:279–290Google Scholar
  20. Götze HJ, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20–26 S) as inferred from interpretation of regional gravity. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes—structure and evolution of an active continental margin. Springer, BerlinGoogle Scholar
  21. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112(7):1091–1105. doi:10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2 CrossRefGoogle Scholar
  22. Grombein T, Seitz K, Heck B (2011) Modelling topographic effects in GOCE gravity gradients. In: Münch U, Dransch W (eds) Observation of the System Earth from Space, GEOTECHNOLOGIEN Science Report 17:84–93. doi:10.2312/GFZ.gt.17.13
  23. Grombein T, Seitz K, Heck B (2014a) Topographic-isostatic reduction of GOCE gravity gradients. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, Proc IAG Gen Assem, Melbourne, Australia, Jun 28—Jul 2, 2011. Int Assoc Geodes Symposia 139:349–356, Springer, Berlin. doi:10.1007/978-3-642-37222-3_46
  24. Grombein T, Luo X, Seitz K, Heck B (2014b) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys. doi:10.1007/s10712-014-9283-1 (Online First)Google Scholar
  25. Gutknecht B (2011) Lithospheric modelling by using optimized GOCE gravity gradient data. In: Ouwehand L (ed) Proceedings of 4th Int GOCE User Workshop, Munich, Germany, Mar 31—Apr 1, 2011, ESA SP-696, ISBN 978-92-9092-260-5. European Space Agency, NoordwijkGoogle Scholar
  26. Hampel A, Pfiffner A (2006) Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction-related mountain belts. In: Buiter SJH, Schreurs G (eds) Analogue and numerical modelling of crustal-scale processes. Geol Soc, London, Special Publication, 253:105–115. doi:10.1144/GSL.SP.2006.253.01.05
  27. Haschke M, Scheuber E, Günther A, Reutter KJ (2002) Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction? Terra Nova 14:49–55. doi:10.1046/j.1365-3121.2002.00387.x CrossRefGoogle Scholar
  28. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The World Stress Map database release 2008. doi:10.1594/GFZ.WSM.Rel2008
  29. Hosse M, Pail R, Horwath M, Holzrichter N, Gutknecht BD (2014) Combined regional gravity model of the Andean convergent subduction zone and its application to lithospheric modelling in active plate margins. Surv Geophys (this issue) Google Scholar
  30. Husen S (1999) Local earthquake tomography of a convergent margin, North Chile: a combined on-and offshore study. Dissertation, Kiel UniversityGoogle Scholar
  31. Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocentre determination in the seismogenic zone of the subducting Nazca plate in northern Chile using a combined on-/offshore network. Geophys J Int 138(3):687–701. doi:10.1046/j.1365-246x.1999.00893.x CrossRefGoogle Scholar
  32. Jones CH, Unruh JR, Sonder LJ (1996) The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381:37–41CrossRefGoogle Scholar
  33. Kendrick, E, Bevis MG, Smalley R, Brooks BA (2001) An integrated crustal velocity field for the central Andes, Geochem Geophys Geosyst 2(11). doi:10.1029/2001GC000191
  34. Köther N, Götze HJ, Gutknecht BD, Jahr T, Jentzsch G, Lücke OH, Mahatsente R, Sharma R, Zeumann S (2012) The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J Geodyn 59–60:207–218. doi:10.1016/j.jog.2011.11.004 CrossRefGoogle Scholar
  35. Kukowski N, Oncken O (2006) Subduction Erosion—the “Normal” Mode of Fore-Arc Material Transfer along the Chiean Margin? In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker M,Wigger P (eds) The Andes: active subduction orogeny, Frontiers in Earth Science Series, Springer, Berlin, pp 217–236. doi:10.1007/978-3-540-48684-8_10
  36. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797. doi:10.1038/nature02049 CrossRefGoogle Scholar
  37. Lithgow-Bertelloni C, Richards MA (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36(1):27–78. doi:10.1029/97RG02282 CrossRefGoogle Scholar
  38. Liu M., Yang Y, Stein S, Klosko E (2002) Crustal shortening and extension in the Central Andes: insights from a viscoelastic model. In: Stein S, Freymueller JT (eds) Plate Boundary Zones, American Geophysical Union, Geodyn Ser 30:325–339. doi:10.1029/030GD19
  39. Mahatsente R, Ranalli G, Bolte D, Götze HJ (2012) On the relation between lithospheric strength and ridge push transmission in the Nazca plate. J Geodyn 53:18–26. doi:10.1016/j.jog.2011.08.002 CrossRefGoogle Scholar
  40. Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo MC, Ortega I (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294. doi:10.1093/gji/ggt183 CrossRefGoogle Scholar
  41. Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. International Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy, S2-183Google Scholar
  42. Novák P, Tenzer R (2013) Gravitational gradients at satellite altitudes in global geophysical studies. Surv Geophys 34(5):653–673. doi:10.1007/s10712-013-9243-1 CrossRefGoogle Scholar
  43. Ortlieb L, Zazs C, Goy JL, Hillaire-Marcel C, Ghaleb B, Cournoyer L (1996) Coastal deformation and sea-level changes in the northern Chile subduction area (23S) during the last 330 ky. Quat Sci Rev 15:819–831, ISSN 0277-3791. doi:10.1016/S0277-3791(96)00066-2
  44. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  45. Pascal C, Cloetingh SAPL (2009) Gravitational potential stresses and stress field of passive continental margins: insights from the south-Norway shelf. Earth Planet Sci Lett 277:464–473. doi:10.1016/j.epsl.2008.11.014 CrossRefGoogle Scholar
  46. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B4). doi:10.1029/2011JB008916
  47. Pichowiak S (1994) Early Jurassic to Cretaceous magmatism in the coastal cordillera and the central depression of North Chile. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes—structure and evolution of an active continental margin, Springer, pp 203–217. doi:10.1007/978-3-642-77353-2_14
  48. Prezzi C, Götze HJ, Schmidt S (2009) 3D density model of the Central Andes. Phys Earth Planet Inter 177(3–4):217–234. doi:10.1016/j.pepi.2009.09.004 CrossRefGoogle Scholar
  49. Pritchard ME, Norabuena EO, Ji C, Boroschek R, Comte D, Simons M, Dixon TH, Rosen PA (2007) Geodetic, teleseismic and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. J Geophys Res Solid Earth 112:B03307. doi:10.1029/2006JB004294 CrossRefGoogle Scholar
  50. Schmidt S, Götze HJ, Fichler C, Alvers M (2010) IGMAS+—a new 3D Gravity, FTG and Magnetic Modelling Software. In: Zipf A, Behncke K, Hillen F, Schefermeyer J (eds) GEOINFORMATIK 2010 “Die Welt im Netz”. Akademische Verlagsgesellschaft AKA GmbH, Heidelberg, pp 57–63. ISBN 978-3-89838-335-6Google Scholar
  51. Schurr B, Rietbrock A, Asch G, Kind R, Oncken O (2006) Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415(1):203–223. doi:10.1016/j.tecto.2005.12.007 CrossRefGoogle Scholar
  52. Schurr B, Asch G, Rosenau M, Wang R, Oncken O, Barrientos S, Salazar P, Vilotte JP (2012) The 2007 M7.7 Tocopilla northern Chile earthquake sequence: implications for along-strike and down dip rupture segmentation and megathrust frictional behaviour. J Geophys Res 117:B05305. doi:10.1029/2011JB009030 Google Scholar
  53. Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279(5347):60–63. doi:10.1126/science.279.5347.60 CrossRefGoogle Scholar
  54. Sobiesiak M (2000) Fault plane structure of the Antofagasta, Chile Earthquake of 1995. Geophys Res Let 27(4):577–580. doi:10.1029/1999GL010498 CrossRefGoogle Scholar
  55. Sobiesiak M, Meyer U, Schmidt S, Götze HJ, Krawczyk C (2007) Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta Chile. J Geophys Res Solid Earth 112:B12308. doi:10.1029/2006JB004796 CrossRefGoogle Scholar
  56. Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620. doi:10.1130/G21557AR.1 CrossRefGoogle Scholar
  57. Somoza R (1998) Updated Nazca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J S Am Earth Sci 11(3):211–215CrossRefGoogle Scholar
  58. Song TRA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301(5633):630–633. doi:10.1126/science.1085557 CrossRefGoogle Scholar
  59. Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics 399(1–4):39–57CrossRefGoogle Scholar
  60. Tassara A (2010) Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495:34–47. doi:10.1016/j.tecto.2010.06.004 CrossRefGoogle Scholar
  61. Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res Solid Earth 111:2156–2202. doi:10.1029/2005JB003976 CrossRefGoogle Scholar
  62. Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean Subduction Zone. J Geophys Res 96(B7):11997–12022. doi:10.1029/91JB00200 CrossRefGoogle Scholar
  63. Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion? J Geophys Res Solid Earth 108(2507):B10. doi:10.1029/2002JB002072 Google Scholar
  64. Wessel P, Müller RD (2007) 6.02—Plate tectonics. In: Schubert G (ed) Treatise on geophysics, Elsevier, Amsterdam, pp 49–98, ISBN 9780444527486. doi:10.1016/B978-044452748-6.00101-2
  65. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441–446. doi:10.1029/90EO00319 CrossRefGoogle Scholar
  66. Witze A (2014) Chile quake defies expectations. Nature 508:440–441. doi:10.1038/508440a CrossRefGoogle Scholar
  67. Zeumann S, Sharma R, Gassmöller R, Jahr T, Jentzsch G (2014) New Finite-Element modelling of subduction processes in the Andes using realistic geometries. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, international association of geodesy symposia, 139:105–111, Springer, Berlin. ISBN:978-3-642-37221-6. doi:10.1007/978-3-642-37222-3_13
  68. Zienkiewicz OC, Taylor RL, Zhu JZ, Nithiarasu P (2005) The finite element method, Butterworth-HeinemannGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. D. Gutknecht
    • 1
  • H.-J. Götze
    • 1
  • T. Jahr
    • 2
  • G. Jentzsch
    • 2
  • R. Mahatsente
    • 3
  • St. Zeumann
    • 2
    • 4
  1. 1.Institute of GeosciencesKiel UniversityKielGermany
  2. 2.Institute of GeosciencesFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Department of Geological SciencesThe University of AlabamaTuscaloosaUSA
  4. 4.Institute of GeologyLeibniz University HannoverHannoverGermany

Personalised recommendations