Advertisement

Surveys in Geophysics

, Volume 35, Issue 4, pp 913–940 | Cite as

Multivariate Prediction of Total Water Storage Changes Over West Africa from Multi-Satellite Data

  • Ehsan ForootanEmail author
  • Jürgen Kusche
  • Ina Loth
  • Wolf-Dieter Schuh
  • Annette Eicker
  • Joseph Awange
  • Laurent Longuevergne
  • Bernd Diekkrüger
  • Michael Schmidt
  • C. K. Shum
Article

Abstract

West African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources of the region, for instance, reduced freshwater availability. Assessing and predicting large-scale total water storage (TWS) variations are necessary for West Africa, due to its environmental, social, and economical impacts. Hydrological models, however, may perform poorly over West Africa due to data scarcity. This study describes a new statistical, data-driven approach for predicting West African TWS changes from (past) gravity data obtained from the gravity recovery and climate experiment (GRACE), and (concurrent) rainfall data from the tropical rainfall measuring mission (TRMM) and sea surface temperature (SST) data over the Atlantic, Pacific, and Indian Oceans. The proposed method, therefore, capitalizes on the availability of remotely sensed observations for predicting monthly TWS, a quantity which is hard to observe in the field but important for measuring regional energy balance, as well as for agricultural, and water resource management. Major teleconnections within these data sets were identified using independent component analysis and linked via low-degree autoregressive models to build a predictive framework. After a learning phase of 72 months, our approach predicted TWS from rainfall and SST data alone that fitted to the observed GRACE-TWS better than that from a global hydrological model. Our results indicated a fit of 79 % and 67 % for the first-year prediction of the two dominant annual and inter-annual modes of TWS variations. This fit reduces to 62 % and 57 % for the second year of projection. The proposed approach, therefore, represents strong potential to predict the TWS over West Africa up to 2 years. It also has the potential to bridge the present GRACE data gaps of 1 month about each 162 days as well as a—hopefully—limited gap between GRACE and the GRACE follow-on mission over West Africa. The method presented could also be used to generate a near-real-time GRACE forecast over the regions that exhibit strong teleconnections.

Keywords

Predicting GRACE-TWS West Africa Autoregressive model Independent Component Analysis GRACE gap filling 

Notes

Acknowledgments

The authors would like to thank M. J. Rycroft (Editor in Chief) and anonymous reviewers for their useful comments, which considerably improved this paper. We also thank S. Nahmani (LAboratoire de Recherche en Géodésie, France) for his detailed comments on the earlier version of this study. We are grateful for the GRACE, WGHM, TRMM, and SST data, as well as climate indices used in this study. E. Forootan and J. Kusche are grateful for the supports by the German Research Foundation (DFG), under the project DFG BAYES-G. The Ohio State University component of the research is supported by the NASA’s Advanced Concepts in Space Geodesy Program (Grant No. NNX12AK28G) and by the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams (Grant No. KZZD-EW-TZ-05). The authors are grateful for the data used in this study. This is a TIGeR Publication no. 510.

References

  1. Ahmed M, Sultan M, Wahr J, Yan E, Milewski A, Sauck W, Becker R, Welton B (2011) Integration of GRACE (gravity recovery and climate experiment) data with traditional data sets for a better understanding of the timedependent water partitioning in African watersheds. J Geol 41(1): doi: 10.1130/G31812.1
  2. Ali A, Lebel T (2009). The Sahelian standardized rainfall index revisited. Int J Climatol :1705–1714. doi:  10.1002/joc
  3. Boone A, Decharme B, Guichard F, de Rosnay P, Balsamo G, Beljaars A, Chopin F, Orgeval T, Polcher J, Delire C, Ducharne A, Gascoin S, Grippa M, Jarlan L, Kergoat L, Mougin E, Gusev Y, Nasonova O, Harris P, Taylor C, Norgaard A, Sandholt I, Ottlé C, Poccard-Leclercq I, Saux-Picart S, Xue Y (2009) The AMMA land surface model intercomparison project (ALMIP). Bull Am Meteorol Soc 90(12):1865–1880. doi: 10.1175/2009BAMS2786.1 CrossRefGoogle Scholar
  4. Chen JL, Wilson CR, Tapley BD, Longuevergne L, Yang ZL, Scanlon BR (2010) Recent La Plata basin drought conditions observed by satellite gravimetry. J Geophys Res 115(D22):1–12. doi: 10.1029/2010JD014689 Google Scholar
  5. Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé Nguyen M, Gennero M-C, Nino F, Abarca Del Rio F, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in near real time water level and storage variations from remote sensing data. J Adv Space Res :1497–1507. doi:  10.1016/j.asr.2011.01.004
  6. Diatta S, Fink AH (2014) Statistical relationship between remote climate indices and West African monsoon variability. Int J Climatol. doi: 10.1002/joc.3912
  7. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  8. Douville H, Conil S, Tyteca S, Voldoire A (2006) Soil moisture memory and West African monsoon predictability: artifact or reality? Clim Dyn 28(7–8):723–742. doi: 10.1007/s00382-006-0207-8 Google Scholar
  9. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26CrossRefGoogle Scholar
  10. Flechtner F (2007) GFZ Level-2 processing standards document for level-2 product release 0004. GRACE 327–743, Rev. 1.0Google Scholar
  11. Fleming K, Awange JL (2013) Comparing the version 7 TRMM 3B43 monthly precipitation product with the TRMM 3B43 version 6/6A and BoM datasets for Australia. Aust Meteorol Oceanogr J 63(3):421–426Google Scholar
  12. Forootan E, Didova O, Schumacher M, Kusche J, Elsaka B (2014) Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003 to 2011. J Geod 88(5):503–514. doi: 10.1007/s00190-014-0696-x CrossRefGoogle Scholar
  13. Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth 118. doi: 10.1002/jgrb.50160
  14. Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. J Remote Sens Environ 124:427–443. doi: 10.1016/j.rse.2012.05.023 CrossRefGoogle Scholar
  15. Forootan E, Kusche J (2013) Separation of deterministic signals, using independent component analysis (ICA). Stud Geophys Geod 57:17–26. doi: 10.1007/s11200-012-0718-1 CrossRefGoogle Scholar
  16. Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  17. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030CrossRefGoogle Scholar
  18. Giannini A, Biasutti M, Held IM, Sobel AH (2008) A global perspective on African climate. Clim Change 90:359–383. doi: 10.1007/s10584-008-9396-y CrossRefGoogle Scholar
  19. Grippa M, Kergoat L, Frappart F, Araud Q, Boone A, de Rosnay P, Lemoine J-M, Gascoin S, Balsamo G, Ottle C, Decharme B, Saux-Picart S, Ramillien G (2011) Land water storage variability over West Africa estimated by gravity recovery and climate experiment (GRACE) and land surface models. Water Resour Res 47:W05549. doi: 10.1029/2009WR008856 CrossRefGoogle Scholar
  20. Güntner A, Stuck J, Döll P, Schulze K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43(W05416). doi: 10.1029/2006WR005247
  21. Hansen JW, Mason SJ, Sun L, Tall A (2011) Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Expl Agric 47(2):205–240. doi:  10.1017/S0014479710000876
  22. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteor Soc 83:1149–1165Google Scholar
  23. Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations. Water Resour Res 48. doi: 10.1029/2011WR011291
  24. Huffman G, Bolvin D (2012) TRMM and other data precipitation data set documentation. Mesoscale atmospheric Processes Laboratory, NASA Goddard Space Flight Center and Science Systems and Applications Inc.Google Scholar
  25. Ilin A, Valpola H, Oja E (2005) Semiblind source separation of climate data detects El Niño as the component with the highest interannual variability. In: Proceedings of the international joint conference on neural networks (IJCNN 2005), Montréal, Québec, Canada, pp 1722–1727Google Scholar
  26. Kaplan A, Kushni Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J Geogr Res 102(C13):27835–27860Google Scholar
  27. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140. doi: 10.1126/science.1100217 CrossRefGoogle Scholar
  28. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81(11):733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  29. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83:903–913. doi: 10.1007/s00190-009-0308-3 CrossRefGoogle Scholar
  30. Long D, Scanlon BR, Longuevergne L, Sun AY, Fernando DN, Save H (2013) GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40(13):3395–3401. doi: 10.1002/grl.50655 CrossRefGoogle Scholar
  31. Ljung L (1987) System identification: theory for the user. Prentice Hall, Englewood Cliffs, N.J. 2005GL023316Google Scholar
  32. Mayer-Gürr T, Eicker A, Kurtenbach E (2010) ITG-GRACE 2010 unconstrained monthly solutions. http://www.igg.uni-bonn.de/apmg/
  33. Mohino E, Rodríguez-Fonseca B, Mechoso CR, Gervois S, Ruti P, Chauvin F (2011) Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J Clim 24:3878–3891. doi: 10.1175/2011JCLI3988.1 CrossRefGoogle Scholar
  34. Nahmani S, Bock O, Bouin M-N, Santamaría-Gómez A, Boy J-P, Collilieux X, Métivier L, Panet I, Genthon P, de Linage C, Wöppelmann G (2012) Hydrological deformation induced by the West African Monsoon: comparison of GPS, GRACE and loading models. J Geophys Res 117:B05409. doi: 10.1029/2011JB009102 Google Scholar
  35. Nicholson SE (2000) The nature of rainfall variability over Africa on time scales of decades to millenia. Glob Planet Change 26:137–158CrossRefGoogle Scholar
  36. Nicholson SE et al (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42:1337–1354CrossRefGoogle Scholar
  37. Omondi P, Awange JL, Ogallo LA, Okoola RA, Forootan E (2012) Decadal rainfall variability modes in observed rainfall records over East Africa and their relations to historical sea surface temperature changes. J Hydrol 464—-465:140–156. doi: 10.1016/j.jhydrol.2012.07.003 CrossRefGoogle Scholar
  38. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam, p 426, ISBN:0444430148Google Scholar
  39. Reynolds RW, Rayne NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  40. Reager JT, Famiglietti JS (2013) Characteristic mega-basin water storage behavior using GRACE. Water Resour Res 49:3314–3329. doi: 10.1002/wrcr.20264 CrossRefGoogle Scholar
  41. Redelsperger J-L, Thorncroft ChD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteor Soc 87:1739–1746. doi: 10.1175/BAMS-87-12-1739 CrossRefGoogle Scholar
  42. Rietbroek R, Brunnabend SE, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res 114(C11004):2009J. doi: 10.1029/C005449 Google Scholar
  43. Rietbroek R, Fritsche M, Dahle C, Brunnabend S-E, Behnisch M, Kusche J, Flechtner F, Schröter J, Dietrich R (2014) Can GPS-derived surface loading bridge a GRACE mission gap? Surv Geophys. doi: 10.1007/s10712-013-9276-5
  44. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng K, Arsenault C-J, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394CrossRefGoogle Scholar
  45. Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Chauvin F, Fontaine B, García-Serrano J, Gervois S, Joly M, Polo I, Ruti P, Roucou P, Voldoire A (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74. doi: 10.1002/asl.308 CrossRefGoogle Scholar
  46. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. doi: 10.1038/43854 Google Scholar
  47. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325. doi: 10.1073/pnas.1200311109 CrossRefGoogle Scholar
  48. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle Ch, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5):319–334CrossRefGoogle Scholar
  49. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res 113:B08419Google Scholar
  50. Schumacher M, Eicker A, Kusche J, Schmied HM, Döll P (2014) Covariance analysis and sensitivity studies for GRACE assimilation into WGHM. IAG Scientific Assembly Proceedings 2014 (in press)Google Scholar
  51. Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJB (2008) Modeling blue and green water availability in Africa. Water Resour Res 44. doi: 10.1029/2007WR006609
  52. Schuol J, Abbaspour KC (2006) Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv Geosci 9:137–143CrossRefGoogle Scholar
  53. Speth P, Christoph M, Diekkrüger B (2011) Impacts of global change on the hydrological cycle in West and Northwest Africa. Speth, Peter; Christoph, Michael; Diekkrüger, Bernd (Eds.). Springer, Berlin Heidelberg, p 675. ISBN:3642129560Google Scholar
  54. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31.  10.1029/2004GL019920
  55. van Dijk AIJM, Peña-Arancibia JL, Sheffield J, Beck HE (2013) Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. Water Resour Res 49(5):2729–2746. doi: 10.1002/wrcr.20251 CrossRefGoogle Scholar
  56. von Storch H, Navarra A (1999) Analysis of climate variability. Springer, p 342, ISBN 978-3-540-66315-7Google Scholar
  57. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  58. Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50(2). doi: 10.1029/2011RG000373
  59. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179:1499–1515. doi: 10.1111/j.1365-246X.2009.04355.x CrossRefGoogle Scholar
  60. Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci Lett 277(1):166–173CrossRefGoogle Scholar
  61. Westra S, Brown C, Lall U, Sharma A (2007) Modeling multivariable hydrological series: principal component analysis or independent component analysis? Water Resour Res 43(6):W06429. doi: 10.1029/2006WR005617 CrossRefGoogle Scholar
  62. Westra S, Sharma A, Brown C, Lall U (2008) Multivariate streamflow forecasting using independent component analysis. Water Resour Res 44(2):W02437. doi: 10.1029/2007WR006104 CrossRefGoogle Scholar
  63. Xie H, Longuevergne L, Ringler C, Scanlon BR (2012) Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol Earth Syst Sci 16(9):3083–3099. doi: 10.5194/hess-16-3083-2012 CrossRefGoogle Scholar
  64. Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. J Hydrometeor 9(3):535–548. doi: 10.1175/2007JHM951.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ehsan Forootan
    • 1
    Email author
  • Jürgen Kusche
    • 1
  • Ina Loth
    • 1
  • Wolf-Dieter Schuh
    • 1
  • Annette Eicker
    • 1
  • Joseph Awange
    • 2
  • Laurent Longuevergne
    • 3
  • Bernd Diekkrüger
    • 4
  • Michael Schmidt
    • 5
  • C. K. Shum
    • 6
    • 7
  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany
  2. 2.Western Australian Centre for Geodesy and The Institute for Geoscience ResearchCurtin UniversityPerthAustralia
  3. 3.Géosciences Rennes, UMR CNRS 6118Université de Rennes1RennesFrance
  4. 4.Hydrology and Environmental Modelling, Department of GeographyBonn UniversityBonnGermany
  5. 5.German Geodetic Research Institute (DGFI)MunichGermany
  6. 6.Division of Geodetic Science, School of Earth SciencesOhio State UniversityColumbusUSA
  7. 7.Institute of Geodesy and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations