Advertisement

Surveys in Geophysics

, Volume 35, Issue 6, pp 1459–1480 | Cite as

Assessing the Current Evolution of the Greenland Ice Sheet by Means of Satellite and Ground-Based Observations

  • A. Groh
  • H. Ewert
  • M. Fritsche
  • A. Rülke
  • R. Rosenau
  • M. Scheinert
  • R. Dietrich
Article

Abstract

The present study utilises different satellite and ground-based geodetic observations in order to assess the current evolution of the Greenland Ice Sheet (GIS). Satellite gravimetry data acquired by the Gravity Recovery and Climate Experiment are used to derive ice-mass changes for the period from 2003 to 2012. The inferred time series are investigated regarding long-term, seasonal and interannual variations. Laser altimetry data acquired by the Ice, Cloud, and land Elevation Satellite (ICESat) are utilised to solve for linear and seasonal changes in the ice-surface height and to infer independent mass-change estimates for the entire GIS and its major drainage basins. We demonstrate that common signals can be identified in the results of both sensors. Moreover, the analysis of a Global Positioning System (GPS) campaign network in West Greenland for the period 1995–2007 allows us to derive crustal deformation caused by glacial isostatic adjustment (GIA) and by present-day ice-mass changes. ICESat-derived elastic crustal deformations are evaluated comparing them with GPS-observed uplift rates which were corrected for the GIA effect inferred by model predictions. Existing differences can be related to the limited resolution of ICESat. Such differences are mostly evident in dynamical regions such as the Disko Bay region including the rapidly changing Jakobshavn Isbræ, which is investigated in more detail. Glacier flow velocities are inferred from satellite imagery yielding an accelerated flow from 1999 to 2012. Since our GPS observations cover a period of more than a decade, changes in the vertical uplift rates can also be investigated. It turns out that the increased mass loss of the glacier is also reflected by an accelerated vertical uplift.

Keywords

Greenland Ice Sheet GRACE ICESat GPS 

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the Priority Programme SPP1257 “Mass Transport and Mass Distribution in the Earth System”. Our spherical harmonic analyses were performed using the freely available software archive SHTOOLS (shtools.ipgp.fr). The GIA model predictions were calculated using the software package SELEN (Spada and Stocchi 2007). All figures were generated by means of the freely available Generic Mapping Tools (Wessel and Smith 1998). We gratefully acknowledge the comments by two anonymous reviewers which helped to improve the original manuscript.

References

  1. Arthern R, Wingham D (1998) The natural fluctuations of firn densification and their effect on the geodetic determination of Ice sheet mass balance. Clim Chang 40(3):605–624CrossRefGoogle Scholar
  2. Bevan S, Luckman A, Murray T (2012) Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere 6:923–937. doi: 10.5194/tc-6-923-2012 CrossRefGoogle Scholar
  3. Bevis M, Wahr J, Khan S, Madsen F, Brown A, Willis M, Kendrick E, Knudsen P, Box J, van Dam T, Caccamise D, Johns B, Nylen T, Abbott R, White S, Miner J, Forsberg R, Zhou H, Wang J, Wilson T, Bromwich D, Francis O (2012) Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1204664109 Google Scholar
  4. Bolch T, Sandberg Sørensen L, Simonsen S, Mölg N, Machguth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys Res Lett 40(5):875–881. doi: 10.1002/grl.50270 CrossRefGoogle Scholar
  5. Borsa A, Moholdt G, Fricker H, Brunt K (2013) A range correction for ICESat and its potential impact on ice sheet mass balance studies. Cryosphere Discuss 7(4):4287–4319. doi: 10.5194/tcd-7-4287-2013 CrossRefGoogle Scholar
  6. van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg W, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326(5955):984–986. doi: 10.1126/science.1178176 CrossRefGoogle Scholar
  7. Clarke P, Lavallée D, Blewitt G, van Dam T, Wahr J (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32(L08):306. doi: 10.1029/2005GL022441 Google Scholar
  8. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE Level-2 processing standards document for Level-2 product release 0005. Technical report, Potsdam. doi: 10.2312/GFZ.b103-12020
  9. Dietrich R, Rülke A, Scheinert M (2005) Present-day vertical crustal deformations in west Greenland from repeated GPS observations. Geophys J Int 163(3):865–874. doi: 10.1111/j.1365-246X.2005.02766.x CrossRefGoogle Scholar
  10. Dietrich R, Maas HG, Bäßler M, Rülke A, Richter A, Schwalbe E, Westfeld P (2007) Jakobshavn Isbrae, West Greenland: flow velocities and tidal interaction of the front area from 2004 field observations. J Geophys Res 112:F03S21. doi: 10.1029/2006JF000601 Google Scholar
  11. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134CrossRefGoogle Scholar
  12. Duan J, Shum C, Guo J, Huang Z (2012) Uncovered spurious jumps in the GRACE atmospheric de-aliasing data: potential contamination of GRACE observed mass change: GRACE atmospheric de-aliasing data. Geophys J Int 191(1):83–87. doi: 10.1111/j.1365-246X.2012.05640.x CrossRefGoogle Scholar
  13. Ewert H, Groh A, Dietrich R (2012a) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi: 10.1016/j.jog.2011.06.003 CrossRefGoogle Scholar
  14. Ewert H, Popov S, Richter A, Schwabe J, Scheinert M, Dietrich R (2012) Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys J Int 191(2):557–568. doi: 10.1111/j.1365-246X.2012.05649.x CrossRefGoogle Scholar
  15. Farrell W (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797CrossRefGoogle Scholar
  16. Farrell W, Clark J (1976) On postglacial sea level. Geophys J R Astr Soc 46(3):647–667. doi: 10.1111/j.1365-246X.1976.tb01252.x CrossRefGoogle Scholar
  17. Flechtner F (2007) AOD1B product description document. Technical report, PotsdamGoogle Scholar
  18. Fleming K, Lambeck K (2004) Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quat Sci Rev 23(9–10):1053–1077. doi: 10.1016/j.quascirev.2003.11.001 CrossRefGoogle Scholar
  19. Forootan E, Didova O, Schumacher M, Kusche J, Elsaka B (2014) Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011. J Geod. 1–12. doi: 10.1007/s00190-014-0696-x
  20. Fricker H, Borsa A, Minster B, Carabajal C, Quinn K, Bills B (2005) Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geophys Res Lett 32:L21S06. doi: 10.1029/2005GL023423 Google Scholar
  21. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(L23):311. doi: 10.1029/2005GL024342 Google Scholar
  22. Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load deformation of the Earth’s crust from continental watermass and atmospheric pressure variations using GPS. J Geodyn. doi: 10.1016/j.jog.2011.04.001
  23. Gardner A, Moholdt G, Wouters B, Wolken G, Burgess D, Sharp M, Cogley J, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473(7347):357–360. doi: 10.1038/nature10089 CrossRefGoogle Scholar
  24. Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial lsostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Chang 98–99:45–53. doi: 10.1016/j.gloplacha.2012.08.001 CrossRefGoogle Scholar
  25. Harig C, Simons F (2012) Mapping Greenland’s mass loss in space and time. Proc Natl Acad Sci USA 109(49):19,934–19,937. doi: 10.1073/pnas.1206785109 CrossRefGoogle Scholar
  26. Howat I, Joughin I, Scambos T (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science 315:1559–1561. doi: 10.1126/science.1138478 CrossRefGoogle Scholar
  27. Howat I, Ahn Y, Joughin I, van den Broeke M, Lenaerts J, Smith B (2011) Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys Res Lett 38(12):L12,501. doi: 10.1029/2011GL047565 Google Scholar
  28. Ivins E, Watkins M, Yuan DN, Dietrich R, Casassa G, Rülke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J Geophys Res 116(B2):B02,403. doi: 10.1029/2010JB007607 Google Scholar
  29. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–610. doi: 10.1038/nature03130 CrossRefGoogle Scholar
  30. Joughin I, Smith B, Howat I, Floricioiu D, Alley R, Truffer M, Fahnestock M (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: observation and model-based analysis. J Geophys Res 117(F2). doi: 10.1029/2011JF002110
  31. Khan S, Wahr J, Stearns L, Hamilton G, van Dam T, Larson K, Francis O (2007) Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys Res Lett 34. doi: 10.1029/2007GL031468,l21701
  32. Khan S, Wahr J, Leuliette E, Larson K, Francis O (2008) Geodetic measurements of postglacial adjustments in Greenland. J Geophys Res 113(B2):B02,402. doi: 10.1029/2007JB004956 Google Scholar
  33. Khan S, Liu L, Wahr J, Howat I, Joughin I, van Dam T, Fleming K (2010a) GPS measurements of crustal uplift near Jakobshavn Isbrae due to glacial ice mass loss. J Geophys Res 115(B9):B09,405. doi: 10.1029/2010JB007490 Google Scholar
  34. Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010b) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:6501. doi: 10.1029/2010GL042460 Google Scholar
  35. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod. doi: 10.1007/s00190-007-0143-3 Google Scholar
  36. Luthcke S, Arendt A, Rowlands D, McCarthy J, Larsen C (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glac 54(188):767–777. doi: 10.3189/002214308787779933 CrossRefGoogle Scholar
  37. Nguyen A, Herring T (2005) Analysis of ICESat data using Kalman filter and kriging to study height changes in East Antarctica. Geophys Res Lett 32:L23S03. doi: 10.1029/2005GL024272 CrossRefGoogle Scholar
  38. Niell A (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planet Space 52:699–702CrossRefGoogle Scholar
  39. NSIDC (2012) National Snow and Ice Data Center: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data (Release 33). Ftp://n4ftl01u.ecs.nasa.gov/SAN/GLAS/GLA12.033/Google Scholar
  40. NSIDC (2013) Correction to the ICESat data product surface elevations due to an error in the range determination from transmit-pulse reference-point selection (Centroid vs Gaussian). http://nsidc.org/data/icesat/pdf/ICESatG-Cstatement
  41. Peltier W (1994) Ice age paleotopography. Science 265(5169):195–201. doi: 10.1126/science.265.5169.195 CrossRefGoogle Scholar
  42. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  43. Podlech S, Weidick A (2004) A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J Glaciol 50(168):153–154. doi: 10.3189/172756504781830231 CrossRefGoogle Scholar
  44. Rastner P, Bolch T, Mölg N, Machguth H, Le Bris R, Paul F (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 6(6):1483–1495. doi: 10.5194/tc-6-1483-2012 CrossRefGoogle Scholar
  45. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi: 10.1016/j.jog.2011.02.003 Google Scholar
  46. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice sheet. Science 311:986–990. doi: 10.1126/science.1121381 CrossRefGoogle Scholar
  47. Rosenau R, Dietrich R, Baessler M (2012) Temporal flow variations of major outlet glaciers in Greenland using landsat data. In: IEEE international geoscience and remote sensing symposium, pp 1557–1560. doi: 10.1109/IGARSS.2012.6351100
  48. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113(B08):403. doi: 10.1029/2007JB005231 Google Scholar
  49. Sasgen I, van den Broeke M, Bamber J, Rignot E, Sørensen L, Wouters B, Martinec Z, Velicogna I, Simonsen S (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303. doi: 10.1016/j.epsl.2012.03.033 CrossRefGoogle Scholar
  50. Slobbe D, Ditmar P, Lindenbergh R (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys J Int 176:95–106. doi: 10.1111/j.1365-246X.2008.03978.x CrossRefGoogle Scholar
  51. Sørensen L, Simonsen S, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg C (2011) Mass balance of the Greenland ice sheet (2003–2008) from ICESat data-the impact of interpolation, sampling and firn density. Cryosphere 5(1):173–186. doi: 10.5194/tc-5-173-2011 CrossRefGoogle Scholar
  52. Spada G, Stocchi P (2007) SELEN: A Fortran 90 program for solving the ’sea-level equation’. Comput Geosci 33:538–562CrossRefGoogle Scholar
  53. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B05):402. doi: 10.1029/2005JB003747 Google Scholar
  54. Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  55. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31(L09):607. doi: 10.1029/2004GL019920 Google Scholar
  56. Tushingham A, Peltier W (1991) ICE-3G: a new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea-level change. J Geophys Res 96:4497–4523CrossRefGoogle Scholar
  57. Weidick A (1991) Present-day expansion of the southern part of the Inland Ice. Rap Grønl Geol Und 152:73–79Google Scholar
  58. Weidick A (1992) Jakobshavn Isbræ area during the climatic optimum. Rap Grønl Geol Und 155:67–72Google Scholar
  59. Weidick A (1993) Neoglacial change of ice cover and the related response of the Earth’s crust in West Greenland. Rap Grønl Geol Und 159:121–126Google Scholar
  60. Weidick A, Oerter H, Reeh N, Thomsen H, Thorning L (1990) The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 82:389–399. doi: 10.1016/S0031-0182(12)80010-1 CrossRefGoogle Scholar
  61. Weidick A, Kelly M, Bennike O (2004) Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe. Boreas 33(4):284–299. doi: 10.1111/j.1502-3885.2004.tb01242.x CrossRefGoogle Scholar
  62. Wessel P, Smith W (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579CrossRefGoogle Scholar
  63. Williams S (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12:147–153CrossRefGoogle Scholar
  64. Wouters B, Chambers D, Schrama E (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35(L20):501. doi: 10.1029/2008GL034816 Google Scholar
  65. Wouters B, Bamber J, van den Broeke M, Lenaerts J, Sasgen I (2013) Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nature Geosci 6(8):613–616. doi: 10.1038/ngeo1874 CrossRefGoogle Scholar
  66. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18,035–18,055CrossRefGoogle Scholar
  67. Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi: 10.1016/S0264-3707(02)00042-X CrossRefGoogle Scholar
  68. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51(175):509–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Groh
    • 1
  • H. Ewert
    • 1
  • M. Fritsche
    • 1
  • A. Rülke
    • 1
    • 2
  • R. Rosenau
    • 1
  • M. Scheinert
    • 1
  • R. Dietrich
    • 1
  1. 1.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany
  2. 2.Bundesamt für Kartographie und GeodäsieFrankfurt am MainGermany

Personalised recommendations