Surveys in Geophysics

, Volume 35, Issue 6, pp 1481–1505 | Cite as

Mass, Volume and Velocity of the Antarctic Ice Sheet: Present-Day Changes and Error Effects

  • A. GrohEmail author
  • H. Ewert
  • R. Rosenau
  • E. Fagiolini
  • C. Gruber
  • D. Floricioiu
  • W. Abdel Jaber
  • S. Linow
  • F. Flechtner
  • M. Eineder
  • W. Dierking
  • R. Dietrich


This study examines present-day changes of the Antarctic ice sheet (AIS) by means of different data sets. We make use of monthly gravity field solutions acquired by the Gravity Recovery and Climate Experiment (GRACE) to study mass changes of the AIS for a 10-year period. In addition to ‘standard’ solutions of release 05, solutions based on radial base functions were used. Both solutions reveal an increased mass loss in recent years. For a 6-year period surface-height changes were inferred from laser altimetry data provided by the Ice, Cloud, and land Elevation Satellite (ICESat). The basin-scale volume trends were converted into mass changes and were compared with the GRACE estimates for the same period. Focussing on the Thwaites Glacier, Landsat optical imagery was utilised to determine ice-flow velocities for a period of more than two decades. This data set was extended by means of high-resolution synthetic aperture radar (SAR) data from the TerraSAR-X mission, revealing an accelerated ice flow of all parts of the glacier. ICESat data over the Thwaites Glacier were complemented by digital elevation models inferred from TanDEM-X data. This extended data set exhibits an increased surface lowering in recent times. Passive microwave remote sensing data prove the long-term stability of the accumulation rates in a low accumulation zone in East Antarctica over several decades. Finally, we discuss the main error sources of present-day mass-balance estimates: the glacial isostatic adjustment effect for GRACE as well as the biases between laser operational periods and the volume–mass conversion for ICESat.


Antarctic ice sheet Mass balance Velocity Accumulation 



This work was supported by the German Research Foundation (DFG) within the Priority Programme SPP1257 “Mass Transport and Mass Distribution in the Earth System”. TerraSAR-X and TanDEM-X data were provided by DLR within science proposals HYD1303 and XTI_GLAC0538, respectively. We gratefully acknowledge the helpful comments provided by two anonymous reviewers.


  1. Abshire J, Sun X, Riris H, Sirota J (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02. doi: 10.1029/2005GL024028 CrossRefGoogle Scholar
  2. Bamler R, Eineder M (2005) Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci Remote Sens Lett 2(2):151–155. doi: 10.1109/LGRS.2004.843203 CrossRefGoogle Scholar
  3. Boening C, Lebsock M, Landerer F, Stephens G (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Geophys Res Lett 39(21):L21,501. doi: 10.1029/2012GL053316 Google Scholar
  4. Breit H, Fritz T, Balss U, Lachaise M, Niedermeier A, Vonavka M (2010) TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens 48(2):727–740. doi: 10.1109/TGRS.2009.2035497 CrossRefGoogle Scholar
  5. Catania G, Hulbe C, Conway H, Scambos T, Raymond C (2012) Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium. J Glac 58(210):741–752. doi: 10.3189/2012JoG11J219 CrossRefGoogle Scholar
  6. Cuffey K, Paterson W (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, AmsterdamGoogle Scholar
  7. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer KH (2012) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Technical report, Potsdam. doi: 10.2312/GFZ.b103-12020
  8. Dierking W, Linow S, Rack W (2012) Toward a robust retrieval of snow accumulation over the antarctic ice sheet using satellite radar. J Geophys Res Atmos 117(D9):D09,110. doi: 10.1029/2011JD017227 CrossRefGoogle Scholar
  9. DLR-HR (2010) TanDEM-X Science Plan TD-PD-PL-0069. Technical report.
  10. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134CrossRefGoogle Scholar
  11. Domine F, Albert M, Huthwelker T, Jacobi HW, Kokhanovsky A, Lehning M, Picard G, Simpson W (2008) Snow physics as relevant to snow photochemistry. Atmos Chem Phys 8(2):171–208CrossRefGoogle Scholar
  12. Ewert H, Groh A, Dietrich R (2012a) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi: 10.1016/j.jog.2011.06.003 CrossRefGoogle Scholar
  13. Ewert H, Popov S, Richter A, Schwabe J, Scheinert M, Dietrich R (2012) Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys J Int 191(2):557–568. doi: 10.1111/j.1365-246X.2012.05649.x CrossRefGoogle Scholar
  14. Flach J, Partington K, Ruiz C, Jeansou E, Drinkwater M (2005) Inversion of the surface properties of ice sheets from satellite microwave data. IEEE Trans Geosci Remote Sens 43(4):743–752. doi: 10.1109/TGRS.2005.844287 CrossRefGoogle Scholar
  15. Flechtner F (2007) AOD1B product description document. Technical report, PotsdamGoogle Scholar
  16. Forsberg R, Keller K, Jacobsen S (2001) Laser monitoring of ice elevations and sea-ice thickness in Greenland. ISPRS Annapolis WorkshopGoogle Scholar
  17. Förste C, Bruinsma B, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts 13Google Scholar
  18. Fritz T, Breit H, Rossi C, Balss U, Lachaise M, Duque S (2012) Interferometric processing and products of the TanDEM-X mission. In: IEEE international geoscience and remote sensing symposium, pp 1904–1907. doi: 10.1109/IGARSS.2012.6351133
  19. Groh A, Ewert H, Scheinert M, Fritsche M, Rülke A, Richter A, Rosenau R, Dietrich R (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea sector, West Antarctica. Glob Planet Change 98–99:45–53. doi: 10.1016/j.gloplacha.2012.08.001 CrossRefGoogle Scholar
  20. Gruber C, Moon Y, Flechtner F, Dahle C, Novák P, König R, Neumayer K (2013) Submonthly GRACE solutions from localizing integral equations and Kalman filtering. In: Rizos C, Willis P (eds) IAG symposia “Earth on the Edge: Science for a Sustainable Planet”, vol 139. Springer, BerlinGoogle Scholar
  21. Gunter B, Didova O, Riva R, Ligtenberg S, Lenaerts J, King M, van den Broeke M, Urban T (2013) Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere Discuss 7(4):3497–3541. doi: 10.5194/tcd-7-3497-2013 CrossRefGoogle Scholar
  22. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  23. Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine JM (2012) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys J Int 189(2):863–876. doi: 10.1111/j.1365-246X.2012.05401.x CrossRefGoogle Scholar
  24. Ivins E, James T (2005) Antarctic glacial isostatic adjustment: a new assessment. Ant Sci 14(4):541–553. doi: 10.1017/S0954102005002968 CrossRefGoogle Scholar
  25. Ivins E, James T, Wahr J, Schrama OE, Landerer F, Simon K (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118(6):3126–3141. doi: 10.1002/jgrb.50208 CrossRefGoogle Scholar
  26. Jenkins A, Dutrieux P, Jacobs S, McPhail S, Perrett J, Webb A, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3(7):468–472. doi: 10.1038/ngeo890 CrossRefGoogle Scholar
  27. Jezek K, Floricioiu D, Farness K, Yague-Martinez N, Eineder M (2009) TerraSAR-X observations of the recovery glacier system, Antarctica. In: IEEE international geoscience and remote sensing symposium, vol 2, pp 226–229. doi: 10.1109/IGARSS.2009.5418049
  28. Joughin I, Tulaczyk S (2002) Positive mass balance of the ross ice streams, West Antarctica. Science 295:476–480CrossRefGoogle Scholar
  29. King M, Bingham R, Moore P, Whitehouse P, Bentley M, Milne G (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature. doi: 10.1038/nature11621 Google Scholar
  30. Krabill WB (2010) IceBridge ATM L2 Icessn elevation, slope, and roughness. [subsets 20111104 and 20121012]. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data CenterGoogle Scholar
  31. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341. doi: 10.1109/TGRS.2007.900693 CrossRefGoogle Scholar
  32. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod. doi: 10.1007/s00190-007-0143-3 Google Scholar
  33. Lee D, Storey J, Choate M, Hayes R (2004) Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans Geosci Remote Sens 42(12):2786–2795CrossRefGoogle Scholar
  34. Lenaerts J, van den Broeke M, van de Berg W, van Meijgaard E (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39(4):L04,501. doi: 10.1029/2011GL050713 Google Scholar
  35. Lenaerts J, van Meijgaard E, van den Broeke M, Ligtenberg S, Horwath M, Isaksson E (2013) Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys Res Lett 40(11):2684–2688. doi: 10.1002/grl.50559 CrossRefGoogle Scholar
  36. Ligtenberg S, Helsen M, van den Broeke M (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5(4):809–819. doi: 10.5194/tc-5-809-2011 CrossRefGoogle Scholar
  37. Linow S (2011) Deriving accumulation rates of greenland and the antarctic ice sheet from microwave remote sensing data. PhD thesis, University of BremenGoogle Scholar
  38. Linow S, Hörhold MW, Freitag J (2012) Grain-size evolution of polar firn: a new empirical grain growth parameterization based on x-ray microcomputer tomography measurements. J Glaciol 58(212):1245–1252. doi: 10.3189/2012JoG11J256 CrossRefGoogle Scholar
  39. Loveland T, Dwyer J (2012) Landsat: building a strong future. Remote Sens Environ 122:22–29. doi: 10.1016/j.rse.2011.09.022 CrossRefGoogle Scholar
  40. MacGregor J, Catania G, Markowski M, Andrews A (2012) Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J Glac 58(209):458–466. doi: 10.3189/2012JoG11J262 CrossRefGoogle Scholar
  41. NSIDC (2012) National Snow and Ice Data Center: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data (Release 33).
  42. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  43. Picciotto E, Crozaz G, De Breuck W (1971) Accumulation on the South Pole—Queen Maud Land Traverse, 1964–1968, Antarctic Snow and Ice Studies II, Antarct. Res. Ser., vol 16, AGU, Washington, DC, pp 257–315. doi: 10.1029/AR016p0257
  44. Pritchard H, Arthern R, Vaughan D, Edwards L (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi: 10.1038/nature08471 CrossRefGoogle Scholar
  45. Pritchard H, Ligtenberg S, Fricker H, Vaughan D, van den Broeke M, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484(7395):502–505. doi: 10.1038/nature10968 CrossRefGoogle Scholar
  46. Rabus B, Lang O, Adolphs U (2003) Interannual velocity variations and recent calving of Thwaites Glacier Tongue, West Antarctica. Ann Glac 36:215–224CrossRefGoogle Scholar
  47. Richter A, Popov S, Dietrich R, Lukin V, Fritsche M, Lipenkov V, Matveev A, Wendt J, Yuskevich A, Masolov V (2008) Observational evidence on the stability of the hydro-glaciological regime of subglacial Lake Vostok. Geophys Res Lett 35(L11):502Google Scholar
  48. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi: 10.1016/j.jog.2011.02.003
  49. Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12,505. doi: 10.1029/2008GL033365 Google Scholar
  50. Rignot E, Bamber J, van den Broeke M, Davis C, Li Y (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110. doi: 10.1038/ngeo102 CrossRefGoogle Scholar
  51. Rignot E, Mouginot J, Scheuchl B (2011a) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys Res Lett 38(10). doi: 10.1029/2011GL047109
  52. Rignot E, Mouginot J, Scheuchl B (2011b) Ice flow of the Antarctic ice sheet. Science 333(6048):1427–1430. doi: 10.1126/science.1208336 CrossRefGoogle Scholar
  53. Rignot E, Velicogna I, van den Broeke M, Monaghan A, Lenaerts J (2011c) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5):L05,503. doi: 10.1029/2011GL046583 Google Scholar
  54. Riva R, Gunter B, Urban T, Vermeersen B, Lindenbergh R, Helsen M, Bamber J, van de Wal R, van den Broeke M, Schutz B (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288(3–4):516–523. doi: 10.1016/j.epsl.2009.10.013 CrossRefGoogle Scholar
  55. Rosenau R, Dietrich R, Baessler M (2012) Temporal flow variations of major outlet glaciers in Greenland using landsat data. In: IEEE international geoscience and remote sensing symposium, pp 1557–1560. doi: 10.1109/IGARSS.2012.6351100
  56. Rossi C, Rodriguez Gonzalez F (2012) TanDEM-X calibrated raw DEM generation. ISPRS J Photogramm Remote Sens 73:12–20. doi: 10.1016/j.isprsjprs.2012.05.014 CrossRefGoogle Scholar
  57. Rotschky G, Rack W, Dierking W, Oerter H (2006) Retrieving snowpack properties and accumulation estimates from a combination of SAR and scatterometer measurements. IEEE Trans Geosci Remote Sens 44(4):943–956. doi: 10.1109/TGRS.2005.862524 CrossRefGoogle Scholar
  58. Rott H, Sturm K, Miller H (1993) Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann Glac 17:337–343Google Scholar
  59. Schutz B, Zwally H, Shuman C, Hancock D, DiMarzio J (2005) Overview of the ICESat mission. Geophys Res Lett 32:L21S01. doi: 10.1029/2005GL024009 CrossRefGoogle Scholar
  60. Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31(L23):402. doi: 10.1029/2004GL021106 Google Scholar
  61. Shepherd A, Ivins E, A G, Barletta V, Bentley M, Bettadpur S, Briggs K, Bromwich D, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M, Lenaerts J, Li J, Ligtenberg S, Luckman A, Luthcke S, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J, Paden J, Payne A, Pritchard H, Rignot E, Rott H, Sorensen L, Scambos T, Scheuchl B, Schrama E, Smith B, Sundal A, van Angelen J, van de Berg W, van den Broeke M, Vaughan D, Velicogna I, Wahr J, Whitehouse P, Wingham D, Yi D, Young D, Zwally H, (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102 Google Scholar
  62. Solomon S, Qin D, Manning M, Alley R, Berntsen T, Bindoff N, Chen Z, Chidthaisong A, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker T, Whetton P, Wood R, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  63. Studinger M, Koenig L, Martin S, Sonntag J (2010) Operation icebridge: using instrumented aircraft to bridge the observational gap between icesat and icesat-2. In: IEEE international geoscience and remote sensing symposium, pp 1918–1919. doi: 10.1109/IGARSS.2010.5650555
  64. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09,607. doi: 10.1029/2004GL019920 Google Scholar
  65. Thomas I, King M, Bentley M, Whitehouse P, Penna N, Williams S, Riva R, Lavallee D, Clarke P, King E, Hindmarsh R, Koivula H (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38(22):L22,302. doi: 10.1029/2011GL049277 Google Scholar
  66. Tinto K, Bell R (2011) Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: constraints from aerogravity. Geophys Res Lett 38(20). doi: 10.1029/2011GL049026
  67. Vaughan D, Bamber J, Giovinetto M, Russell J, Cooper A (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946CrossRefGoogle Scholar
  68. Wang X, Rummel R (2012) Using swarm for gravity field recovery: first simulation results. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, international association of geodesy symposia, vol 137, pp 301–306. doi: 10.1007/978-3-642-22078-4_45
  69. Werninghaus R, Buckreuss S (2010) The TerraSAR-X mission and system design. IEEE Trans Geosci Remote Sens 48(2):606–614. doi: 10.1109/TGRS.2009.2031062 CrossRefGoogle Scholar
  70. Whitehouse P, Bentley M, Milne G, King M, Thomas I (2012) A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys J Int 190(3):1464–1482. doi: 10.1111/j.1365-246X.2012.05557.x CrossRefGoogle Scholar
  71. Wiesmann A, Mätzler C (1998) Radiometric and structural measurements of snow samples. Radio Sci 33:273–289CrossRefGoogle Scholar
  72. Zwally H, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi: 10.1016/S0264-3707(02)00042-X CrossRefGoogle Scholar
  73. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glac 51(175):509–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Groh
    • 1
    Email author
  • H. Ewert
    • 1
  • R. Rosenau
    • 1
  • E. Fagiolini
    • 2
  • C. Gruber
    • 2
  • D. Floricioiu
    • 3
  • W. Abdel Jaber
    • 3
  • S. Linow
    • 4
  • F. Flechtner
    • 2
  • M. Eineder
    • 3
  • W. Dierking
    • 4
  • R. Dietrich
    • 1
  1. 1.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany
  2. 2.Section 1.2: Global Geomonitoring and Gravity FieldGFZ German Research Centre for GeosciencesWeßlingGermany
  3. 3.Remote Sensing Technology InstituteGerman Aerospace Center (DLR)WeßlingGermany
  4. 4.Climate Sciences DivisionAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations