Surveys in Geophysics

, Volume 35, Issue 6, pp 1267–1283 | Cite as

Can GPS-Derived Surface Loading Bridge a GRACE Mission Gap?

  • Roelof RietbroekEmail author
  • Mathias Fritsche
  • Christoph Dahle
  • Sandra-Esther Brunnabend
  • Madlen Behnisch
  • Jürgen Kusche
  • Frank Flechtner
  • Jens Schröter
  • Reinhard Dietrich


We investigated two ‘gap-filler’ methods based on GPS-derived low-degree surface loading variations (GPS-I and GPS-C) and a more simple method (REF-S) which extends a seasonal harmonic variation into the expected Gravity Recovery and Climate Experiment (GRACE) mission gap. We simulated two mission gaps in a reference solution (REF), which is derived from a joint inversion of GRACE (RL05) data, GPS-derived surface loading and simulated ocean bottom pressure. The GPS-I and GPS-C methods both have a new type of constraint applied to mitigate the lack of GPS station network coverage over the ocean. To obtain the GPS-C solution, the GPS-I method is adjusted such that it fits the reference solution better in a 1.5 year overlapping period outside of the gap. As can be expected, the GPS-I and GPS-C solutions contain larger errors compared to the reference solution, which is heavily constrained by GRACE. Within the simulated gaps, the GPS-C solution generally fits the reference solution better compared to the GPS-I method, both in terms of spherical harmonic loading coefficients and in terms of selected basin-averaged hydrological mass variations. Depending on the basin, the RMS-error of the water storage variations (scaled for leakage effects) ranges between 1.6 cm (Yukon) and 15.3 cm (Orinoco). In terms of noise level, the seasonal gap-filler method (REF-S) even outperforms the GPS-I and GPS-C methods, which are still affected by spatial aliasing problems. However, it must be noted that the REF-S method cannot be used beyond the study of simple harmonic seasonal variations.


Surface loading GPS GRACE Basin averages Mission gap 



Financial support of this study has been provided by the German Research Foundation, under Grants KU1207/6-3, DI473/41-3, FL592/1-3, SCHR779/4-3, in the framework of the special priority program: SPP1257 ‘mass transport and mass distribution in the system Earth.’ We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100 % of the raw telemetry data of the twin GRACE satellites. The helpful suggestions of Xiaoping Wu and an anonymous reviewer were highly appreciated.


  1. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114(B6)Google Scholar
  2. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2):2103CrossRefGoogle Scholar
  3. Blewitt G, Clarke P (2003) Inversion of earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108:2311. doi: 10.1029/2002JB002290 Google Scholar
  4. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550):2342–2345. doi: 10.1126/science.1065328 CrossRefGoogle Scholar
  5. Chambers DP, Schröter J (2011) Measuring ocean mass variability from satellite gravimetry. J Geodyn 52(5):333–343CrossRefGoogle Scholar
  6. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2011) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86:1–14Google Scholar
  7. Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer K (2013) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Scientific Technical Report STR12/02, Data Revised Edition (January 2013)Google Scholar
  8. Dahlen FA (1976) The passive influence of the oceans upon the rotation of the earth. Geophys J R Astron Soc 46(2):363–406CrossRefGoogle Scholar
  9. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):3186. doi: 10.1029/2001JC001224 CrossRefGoogle Scholar
  10. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134CrossRefGoogle Scholar
  11. Dziewonski A (1981) Preliminary reference earth model. Phys Earth Planet Inter 25(4):297. doi: 10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  12. Eicker A, Schumacher M, Kusche J, Döll P, Müller-Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble Kalman filter. Surv Geophys (this issue)Google Scholar
  13. Fenoglio-Marc L, Rietbroek R, Grayek S, Becker M, Kusche J, Stanev E (2012) Water mass variation in the mediterranean and black sea. J Geodyn 59-60(0):168–182. doi: 10.1016/j.jog.2012.04.001, Mass Transport and Mass Distribution in the System EarthCrossRefGoogle Scholar
  14. Flechtner F, Morton P, Watkins M, Webb F (2013) Status of the GRACE follow-on mission. In: Proceedings of the IAG symposia, gravity, geoid and height systems (GGHS2012), Venice, Italy (accepted)Google Scholar
  15. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23,311CrossRefGoogle Scholar
  16. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. The Ohio State University, Columbus, OHGoogle Scholar
  17. Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):259–268CrossRefGoogle Scholar
  18. Köhl A, Siegismund F, Stammer D (2012) Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates. J Geophys Res 117(C4)Google Scholar
  19. Kusche J (2003) A monte-carlo technique for weight estimation in satellite geodesy. J Geod 76(11):641–652CrossRefGoogle Scholar
  20. Kusche J, Schrama EJO (2005) Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 110(B9):9409. doi: 10.1029/2004JB003556 CrossRefGoogle Scholar
  21. Pilinski E, Nerem R (2011) Experiments with EOF-based gravity field reconstructions using SLR and GRACE data. In: AGU fall meeting abstracts, vol 1, p 884Google Scholar
  22. Rietbroek R, Brunnabend SE, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res 114:C11004. doi: 10.1029/2009JC005449 CrossRefGoogle Scholar
  23. Rietbroek R, Brunnabend SE, Kusche J, Schröter J (2012) Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J Geodyn 59:72–81. doi: 10.1016/j.jog.2011.06.007 CrossRefGoogle Scholar
  24. Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled obp and reprocessed GPS data. J Geodyn 59–60(0):64–71. doi: 10.1016/j.jog.2011.02.003 Google Scholar
  25. Rignot E, Velicogna I, Van den Broeke M, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5)Google Scholar
  26. Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5):319. doi: 10.1007/s10712-008-9033-3 CrossRefGoogle Scholar
  27. Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein W, Folkner W (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86(12):1083–1095CrossRefGoogle Scholar
  28. Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48(3):504–536. doi: 10.1137/S0036144504445765 CrossRefGoogle Scholar
  29. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B5):B05402Google Scholar
  30. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–506. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  31. Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model. Ocean Model 27(3-4):114–129. doi: 10.1016/j.ocemod.2008.10.009 CrossRefGoogle Scholar
  32. Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443(7109):329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  33. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  34. Wang X, Gerlach C, Rummel R (2012) Time-variable gravity field from satellite constellations using the energy integral. Geophys J Int 190(3):1507–1525CrossRefGoogle Scholar
  35. Woodward R (1888) On the form and position of mean sea level. Geol Surv Bull 48:87–170Google Scholar
  36. Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B10):9401. doi: 10.1029/2005JB004100 CrossRefGoogle Scholar
  37. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3(9):642. doi: 10.1038/ngeo938 CrossRefGoogle Scholar
  38. Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61CrossRefGoogle Scholar
  39. Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Roelof Rietbroek
    • 1
    Email author
  • Mathias Fritsche
    • 2
  • Christoph Dahle
    • 3
  • Sandra-Esther Brunnabend
    • 4
  • Madlen Behnisch
    • 5
  • Jürgen Kusche
    • 1
  • Frank Flechtner
    • 3
  • Jens Schröter
    • 5
  • Reinhard Dietrich
    • 2
  1. 1.Chair of Astronomical, Mathematical and Physical GeodesyInstitute of Geodesy and GeoinformationBonnGermany
  2. 2.Institute for Planetary GeodesyDresdenGermany
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Institute for Marine and Atmospheric Research UtrechtUtrechtThe Netherlands
  5. 5.Alfred Wegener InstituteBremerhavenGermany

Personalised recommendations