Surveys in Geophysics

, Volume 35, Issue 3, pp 813–837 | Cite as

Glaciers in the Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales

  • Valentina RadićEmail author
  • Regine Hock


Changes in mass contained by mountain glaciers and ice caps can modify the Earth’s hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea-level rise. On regional and local scales, glacier meltwater is an important contributor to and modulator of river flow. In light of strongly accelerated worldwide glacier retreat, the associated glacier mass losses raise concerns over the sustainability of water supplies in many parts of the world. Here, we review recent attempts to quantify glacier mass changes and their effect on river runoff on regional and global scales. We find that glacier runoff is defined ambiguously in the literature, hampering direct comparison of findings on the importance of glacier contribution to runoff. Despite consensus on the hydrological implications to be expected from projected future warming, there is a pressing need for quantifying the associated regional-scale changes in glacier runoff and responses in different climate regimes.


Glaciers Mass balance Glacier runoff Sea-level rise Mass-balance observations Glacier projections Modeling 



This study was supported by grants from NSF (EAR 0943742, EAR 1039008) and NASA (NNX11AO23G, NNX11AF41G). H. Feilhauer assisted with Fig. 2.


  1. Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Yungel J, Koerner R (2004) Elevation changes of ice caps in the Canadian Arctic Archipelago. J Geophys Res 109 (F04007). doi: 10.1029/2003JF000045
  2. Adalgeirsdottir G, Johannesson T, Bjornsson H, Palsson F, Sigurdsson O (2006) Response of Hofsjokull and southern Vatnajokull, Iceland, to climate change. J Geophys Res 111(F03001). doi: 10.1029/2005JF000388
  3. Adhikari S, Marshall SJ (2012) Glacier volume-area relation for high-order mechanics and transient glacier states. Geophys Res Lett 39(L16505). doi: 10.1029/2012GL052712
  4. Anderson B, MacKintosh A, Stumm D, George L, Kerr T, Winter-Billington A, Fitzsimons S (2010) Climate sensitivity of a high-precipitation glacier in New Zealand. J Glaciol 56(195):114–128Google Scholar
  5. Arendt A, Echelmeyer K, Harrison W, Lingle C, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–386Google Scholar
  6. Arendt A et al (2012) Randolph glacier inventory: a dataset of global glacier outlines version: 2.0. GLIMS Technical ReportGoogle Scholar
  7. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102:20355–20362Google Scholar
  8. Bahr DB, Dyurgerov M, Meier MF (2009) Sea-level rise from glaciers and ice caps: a lower bound. Geophys Res Lett 36:L03501. doi: 10.1029/2008GL036309 Google Scholar
  9. Berthier E, Schiefer E, Clarke GKC, Menounos B, Remy F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci 3:92–95Google Scholar
  10. Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA (2013) Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geo 6:274–278. doi: 10.1038/ngeo1746 Google Scholar
  11. Bjornsson H (2002) Subglacial lakes and jokulhlaups in Iceland. Global Planet Change 35:255–271Google Scholar
  12. Bjornsson H, Palsson F, Gudmundsson S, Magnusson E, Adalgeirsdottir G, Johannesson T, Berthier E, Sigurdsson O, Thorsteinsson T (2013) Contribution of Icelandic ice caps to sea level rise: trends and variability since the Little Ice Age. Geophys Res Lett 40:1–5. doi: 10.1002/grl.50278 Google Scholar
  13. Bolch T, Sandberg Sørensen L, Simonsen SB, Molg N, Machguth H, Rastner P, Paul F (2013) Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys Res Lett 40:875–881. doi: 10.1002/grl.50270 Google Scholar
  14. Braithwaite RJ (2002) Glacier mass balance: the first 50 years of international monitoring. Progress in Phys Geogr 26(1):76–95Google Scholar
  15. Braithwaite RJ, Zhang Y (1999) Modelling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann 81A(4):489–496Google Scholar
  16. Braithwaite RJ, Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J Glaciol 46(152):7–14Google Scholar
  17. Braun LN, Weber M, Schulz M (2000) Consequences of climate change for runoff from Alpine regions. Ann Glaciol 31(1):19–25Google Scholar
  18. Bring A, Destouni G (2011) Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic. Ambio 40:361–369Google Scholar
  19. Burgess EW, Forster RR, Larsen CF (2013) Flow velocities of Alaskan glaciers. Nat Commun 4:2146. doi: 10.1038/ncomms3146 Google Scholar
  20. Carenzo M, Pellicciotti F, Rimkus S, Burlando P (2009) Assessing the transferability and robustness of an enhanced temperature-index glacier melt model. J Glaciol 55(190):258–274Google Scholar
  21. Casassa G, Rivera A, Schwikowski M (2006) Glacier mass balance data for southern South America (30°S - 56°S)”. KNIGHT, P.G., ed., Glacier Science and Environmental Change, Blackwell, Oxford, UK, In, pp 239–241Google Scholar
  22. Chen J, Ohmura A (1990) On the influence of Alpine glaciers on runoff. In: Lang H, Musy A (Eds) Hydrology in Mountainous Regions I, IAHS Publ 193: 117-125Google Scholar
  23. Chen JL, Tapley BD, Wilson CR (2006) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248(1–2):368–378Google Scholar
  24. Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34:L22501. doi: 10.1029/2007GL031871 Google Scholar
  25. Clarke GKC, Anslow FS, Jarosch AH, Radić V, Menounos B, Bolch T, Berthier E (2012) Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J Clim, e-View. doi: 10.1175/JCLI-D-12-00513.1 Google Scholar
  26. Cogley JG (2003) GGHYDRO—global hydrographic data, release 2.3. Trent Technical Note 2003-1, Department of Geography, Trent University, Peterborough, Ont. []
  27. Cogley JG (2005) Mass and energy balances of glaciers and ice sheets, in M. G. Anderson, ed., Encyclopedia of Hydrological Sciences, p 2555–2573Google Scholar
  28. Cogley JG (2009a) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38Google Scholar
  29. Cogley JG (2009b) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100Google Scholar
  30. Cogley JG (2011) The future of the world’s climate (2011) Chapter 8Google Scholar
  31. Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms, technical documents in hydrology No. 86, UNESCO-IHP, ParisGoogle Scholar
  32. Colgan W, Pfeffer WT, Rajaram H, Abdalati W, Balog J (2012) Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020. The Cryosphere 6:1395–1409. doi: 10.5194/tc-6-1395-2012 Google Scholar
  33. Collier E, Mölg T, Maussion F, Scherer D, Mayer C, Bush ABG (2013) High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. The Cryosphere Discuss 7:103–144. doi: 10.5194/tcd-7-103-2013 Google Scholar
  34. Comeau LEL, Pietroniro A, Demuth MN (2009) Glacier contribution to the North and South Saskatchewan Rivers. Hydrol Process 23:2640–2653. doi: 10.1002/hyp.7409 Google Scholar
  35. de Woul M, Hock R (2005) Static mass balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann Glaciol 42:217–224Google Scholar
  36. Deponti A, Pennati V, de Biase L, Maggi V, Berta F (2006) A new fully three-dimensional numerical model for ice dynamics. J Glaciol 52(178):365–377Google Scholar
  37. Dowdeswell JA, Bassford RP, Gorman MR, Williams M, Glazovsky AF, Macheret YY, Shepherd AP, Vasilenko YV, Savatyuguin LM, Hubberten H-W, Miller H (2002) Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya. Russian High Arctic. J Geophys Res 107:B4. doi: 10.1029/2000/JB000129 Google Scholar
  38. Dowdeswell J, Benham J, Strozzi T, Hagen JO (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet. Svalbard. J Geophys Res 113:F03022. doi: 10.1029/2007JF000905 Google Scholar
  39. Dyurgerov, MB (2002) Glacier mass balance and regime: data of measurements and analysis. In: Meier, M. F. and Armstrong, R., Institute of Arctic and Alpine Research 55, University of Colorado, BoulderGoogle Scholar
  40. Dyurgerov MB (2003) Observational evidence of accelerated glacier wastage: Uncertainty in prediction. Workshop on Assessing Global Glacier Recession, 16–17 March 2003, Boulder: World Data Center for GlaciologyGoogle Scholar
  41. Dyurgerov MB (2010) Reanalysis of Glacier Changes: from the IGY to the IPY, 1960-2008. Data of Glaciological Studies 108:1–116Google Scholar
  42. Dyurgerov MB, Carter CL (2004) Observational Evidence of Increases in Freshwater Inflow to the Arctic Ocean Arctic. Arct Antarct Alp Res 36(1):117–122Google Scholar
  43. Dyurgerov MB, Meier MF (1997a) Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arct Antarct Alp Res 29:379–391Google Scholar
  44. Dyurgerov MB, Meier MF (1997b) Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arct Antarct Alp Res 29:392–402Google Scholar
  45. Dyurgerov MB, Meier MF (2005) Glaciers and the Changing Earth System: a 2004 Snapshot, Occasional Paper 58 Institute of Arctic and Alpine Research. University of Colorado, Boulder 118pGoogle Scholar
  46. Dyurgerov MB, Meier MF, Bahr DB (2009) A new index of glacier area change: a tool for glacier monitoring. J Glaciol 55(192):710–716Google Scholar
  47. Fleming SJ, Clarke GKC (2003) Glacial control of water resource and related environmental responses to climate warming: empirical analysis using historical streamflow data from northwestern Canada. Canadian Water Resources Journal 28(1):69–86Google Scholar
  48. Fountain AG, Tangborn WV (1985) The effect of glaciers on streamflow variations. Water Resour Res 21(4):579–586Google Scholar
  49. Gardner AS, Moholdt G, Wouters B, Wolken G, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 437:357–360Google Scholar
  50. Gardner A, Moholdt G, Cogley JG, Wouters B, Arendt A, Wahr J, Berthier E, Hock R, Pfeffer T, Kaser G, Ligtenberg S, Bolch T, Sharp M, Hagen JO, van den Broeke M, Paul F (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340:852–857. doi: 10.1126/science.1234532 Google Scholar
  51. Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim Dyn doi. doi: 10.1007/s00382-013-1743-7 Google Scholar
  52. Gleckler PJK, Taylor E, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:L06711. doi: 10.1029/2007JD008972 Google Scholar
  53. Gregory JM, Oerlemans J (1998) Simulated future sea level sea level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature 391:474–476Google Scholar
  54. Hagg W, Braun LN, Weber M, Becht M (2006) Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Nord Hydrol 37:93–105Google Scholar
  55. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008) An integrated model for the assessment of global water resources - Part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025Google Scholar
  56. Hirabayashi Y, Kanae S, Struthers I, Oki T (2005) A 100-year (1901-2000) global retrospective estimation of the terrestrial water cycle. J Geophys Res 110:D19101. doi: 10.1029/2004JD005492 Google Scholar
  57. Hirabayashi Y, Kanae S, Masude K, Motoya K, Döll P (2008) A 59-year (1948-2006) global near-surface meteorological data set for land surface models. Part I: development of daily forcing and assessment of precipitation intensity. Hydrological Research Letters 2:36–40. doi: 10.3178/HRL.2.36 Google Scholar
  58. Hirabayashi Y, Doll P, Kanea S (2010) Global-scale modeling of glacier mass balances for water resources assessments: glacier mass changes between 1948 and 2006. J Hydrol 390(3–4):12Google Scholar
  59. Hirabayashi Y, Zhang Y, Watanabe S, Koirala S, Kanae S (2013) Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrological Research Letters 7(1):6–11. doi: 10.3178/HRL.7.6 Google Scholar
  60. Hock R (2003) Temperature index melt modelling in mountain regions. J Hydrol 282(1–4):104–115. doi: 10.1016/S0022-1694(03)00257-9 Google Scholar
  61. Hock R (2005) Glacier melt: a review on processes and their modelling. Prog in Phys Geogr 29(3):362–391Google Scholar
  62. Hock R, Jansson P (2005) Modelling glacier hydrology. In: Anderson, M. G. and J. McDonnell (Eds.). Enzyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd, hichester. 4: 2647–2655Google Scholar
  63. Hock R, Jansson P, Braun L (2005) Modelling the response of mountain glacier discharge to climate warming. In: Huber UM, Reasoner MA, Bugmann H (eds) Global Change and Mountain Regions - A State of Knowledge Overview. Springer, Dordrecht, pp 243–252Google Scholar
  64. Hock R, de Woul M, Radić V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07501. doi: 10.1029/2008GL037020 Google Scholar
  65. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial Ecosystems. Ecol Monogr 78(1):41–67Google Scholar
  66. Hood E, Berner L (2009) The effect of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J Geophys Res 114:G03001. doi: 10.1029/2009JG000971 Google Scholar
  67. Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nature Geosci 1:583–587Google Scholar
  68. Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047. doi: 10.1038/nature08580 Google Scholar
  69. Hopkinson C, Young GJ (1998) The effect of glacier wastage on the flow of the Bow River at Banff, Alberta, 1951-1993. Hydrol Process 12:1745–1762Google Scholar
  70. Horton P, Schaefli B, Mezghani A, Hingray B, Musy A (2006) Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol Process 20:2091–2109. doi: 10.1002/hyp.6197 Google Scholar
  71. Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour Res 47:W07511. doi: 10.1029/2010WR010299 Google Scholar
  72. Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J Geophys Res 117:F04010. doi: 10.1029/2012JF002523 Google Scholar
  73. Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Processes 22:3888–3902. doi: 10.1002/hyp.7055 Google Scholar
  74. Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940 s due to enhanced solar radiation. Geophys Res Lett 36:L23501. doi: 10.1029/2009GL040789 Google Scholar
  75. Huss M, Jouvet G, Farinotti D, Bauder A (2010) Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol Earth Syst Sc 14:815–829Google Scholar
  76. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328:1382–1385. doi: 10.1126/science.1183188 Google Scholar
  77. Immerzeel WW, Pelliciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geosci 6:742–745. doi: 10.1038/ngeo1896 Google Scholar
  78. Ivins ER, Watkins MM, Yuan D-N, Dietrich R, Casassa G, Rlke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J Geophys Res 116:B02403Google Scholar
  79. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386):514–518. doi: 10.1038/nature10847 Google Scholar
  80. Jansson P, Hock R, Schneider T (2003) The concept of glacier water storage - a review. J Hydrol 282(1–4):116–129. doi: 10.1016/S0022-1694(03)00258-0 Google Scholar
  81. Jarosch AH, Schoof CG, Anslow FS (2012) Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere 7:229–240. doi: 10.5194/tc-7-229-2013 Google Scholar
  82. Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439. doi: 10.1016/ Google Scholar
  83. Kaser G, Fountain A, Jansson P (2002) A manual for monitoring the mass balance of mountain glaciers. UNESCO, International Hydrological Programme, Technical Documents in Hydrology, No. 59.107 ppGoogle Scholar
  84. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961-2004. Geophys Res Lett 33:L19501Google Scholar
  85. Kaser G, Grosshauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci U S 107:20223–20227. doi: 10.1073/pnas.1008162107 Google Scholar
  86. Klok EJ, Oerlemans J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher. Switzerland. J Glaciology 48(163):505–518Google Scholar
  87. Kobierska F, Jonas T, Zappa M, Bavay M, Magnusson J, Bernasconi SM (2013) Future runoff from a partly glacierized watershed in Central Switzerland: a two-model approach. Adv Water Resour 55:204–214Google Scholar
  88. Koboltschnig GR, Schoner Wolfgang, Zappa M, Kroisleitner C, Holzmann H (2008) Runoff modelling of the glacierized Alpine Upper Salzach basin (Austria): multi-criteria result validation. Hydrol Process 22:3950–3964. doi: 10.1002/hyp.7112 Google Scholar
  89. Koboltschnik GR, Schoner WS, Zappa M, Holzmann H (2007) Contribution of glacier melt to stream runoff: if the climatically extreme summer of 2003 had happened in 1979. Ann Glaciol 46:303–308Google Scholar
  90. Konz M, Seibert J (2010) On the value of glacier mass balances for hydrological model calibration. J Hydrol 385:238–246. doi: 10.1016/j.jhydrol.2010.02.025 Google Scholar
  91. Kyle RE, Brabets TB (2001) Water temperature of streams in the Cook Inlet basin, Alaska, and implications of climate change. US Geological Survey Water-Resources Investigation Report 01-4109Google Scholar
  92. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184Google Scholar
  93. Lambrecht A, Mayer C (2009) Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J Hydrol 376:353–361Google Scholar
  94. Lang H (1986) Forecasting meltwater runoff from snow-covered areas and from glacier basins. In Kraijenoff DA, Moll JR (Eds) River Flow Modelling and Forecasting. Reidel Publishing. Dordrecht pp 99–127Google Scholar
  95. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground, in Solomon, S., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 337–383. Cambridge University Press, CambridgeGoogle Scholar
  96. Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: a new, fast and robust approach. J Geophys Res 117:F03007. doi: 10.1029/2011JF002313 Google Scholar
  97. Lliboutry L, Morales Arnao B, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blance, Peru. I Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254Google Scholar
  98. Lüthi MP (2009) Transient response of idealized glaciers to climate change. J Glaciol 55(193):918–930Google Scholar
  99. Luthcke SB, Arendt AA, Rowlands DD, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glaciol 54(188):767–777Google Scholar
  100. MacDougall AH, Flowers GE (2011) Spatial and temporal transferability of a distributed energy-balance glacier melt-model. J Clim 24(5):1480–1498Google Scholar
  101. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere 6:1295–1322. doi: 10.5194/tc-6-1295-2012 Google Scholar
  102. Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290:30–36Google Scholar
  103. McNabb B, Hock R, O’Neel S, Rasmussen LA, Ahn Y, Conway H, Herreid S, Joughin I, Pfeffer T, Smith B, Truffer M (2012) Using surface velocities to infer ice thickness and bed topography: a case study at Columbia Glacier. Alaska. J Glaciol 58(212):1151–1164. doi: 10.3189/2012JoG11J249 Google Scholar
  104. Meier M (1984) Contribution of Small Glaciers to Global Sea Level. Science 226(4681):1418–1421. doi: 10.1126/science.226 4681.1418Google Scholar
  105. Meier MF, Tangborn WV (1961) Distinctive characteristics of glacier runoff. US Geol Surv Prof Pap 424(B):14–16Google Scholar
  106. Meier MF, Dyurgerov MB, Rick U, O’Neel S, Pfeffer WT, Anderson AS, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(5841):1064–1067. doi: 10.1126/science.1143906 Google Scholar
  107. Mercanton PL ed. (1916) Vermessungen am Rhonegletscher/Mensuration au glacier du Rhone: 1874–1915. Neue Denkschr Schweiz Naturforsch Ges 52Google Scholar
  108. Mernild S, Lipscomp W, Bahr D, Radić V, Zemp M (2013) Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. The Cryosphere (in press)Google Scholar
  109. Milner AM, Knudsen EE, Soiseth C, Robertson AL, Schell D, Phillips IT, Magnusson K (2000) Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska, USA. Can J of Fish Aquat Sci 57(11):2319–2335Google Scholar
  110. Moholdt G, Nuth C, Hagen JO, Kohler J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens Environ 114(11):2756–2767. doi: 10.1016/j.rse.2010.06.008 Google Scholar
  111. Moholdt G, Wouters B, Gardner AS (2012) Recent mass changes of glaciers in the Russian High Arctic. Geophys Res Lett. doi: 10.1029/2012GL051466, in press
  112. Mölg T, Kaser G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J Geophys Res 116:D16101. doi: 10.1029/2011JD015669 Google Scholar
  113. Mölg T, Cullen NJ, Hardy DR, Winkler M, Kaser G (2009) Quantifying climate change in the tropical mid-troposphere over East Africa from glacier shrinkage on Kilimanjaro. J Clim 22:4162–4181Google Scholar
  114. Müller-Lemans VH, Funk M, Aellen M, Kappenberger G (1994) Langjährige massenbilanzreihen von gletschern in der Schweiz, Z. Gletscherkd Glazialgeol 30:141–160Google Scholar
  115. Neal EG, Walter MT, Coffeen C (2002) Linking the Pacific Decadal Oscillation to seasonal stream discharge patterns in southeast Alaska. J Hydrol 263:188–197Google Scholar
  116. Neal EG, Hood E, Smikrud K (2010) Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys Res Lett 37:L06404. doi: 10.1029/2010GL042385 Google Scholar
  117. Nuth C, Moholdt G, Kohler J, Hagen JO, Kääb A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J Geophys Res 115:F01008. doi: 10.1029/2008JF001223 Google Scholar
  118. Oerlemans J, Fortuin JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258(5079):115–117Google Scholar
  119. Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40(4):753–761Google Scholar
  120. Ohmura A (2004) Cryosphere during the twentieth century. In: Sparks, R.S.J. and Hawkesworth, C.J. (eds.) The state of the Planet: Frontiers and Challenges in Geophysics. Geophys Monogr Ser 150, AGU, Washington DC: 239–257Google Scholar
  121. Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46(1):367–374Google Scholar
  122. Østrem G, Brugman M (1991) Glacier mass-balance measurements: a manual for field and office work. NHRI Science Report pp 224Google Scholar
  123. Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502. doi: 10.1029/2008GL034718 Google Scholar
  124. Picasso M, Rappaz J, Reist A, Funk M, Blatter H (2004) Numerical simulation of the motion of a two-dimensional glacier. Int J Numer Meth Engng 60:995–1009. doi: 10.1002/nme.997 Google Scholar
  125. Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci U S 106:8441–8446. doi: 10.1073/pnas.0900094106 Google Scholar
  126. Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010. doi: 10.1029/2009JF001373 Google Scholar
  127. Radić V, Hock R (2011) Regional differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geo 4:91–94. doi: 10.1038/NGEO1052 Google Scholar
  128. Radić V, Hock R, Oerlemans J (2007) Volume-area scaling vs flowline modelling in glacier volume projections. Ann Glaciol 46:234–240Google Scholar
  129. Radić V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J Glaciol 54(187):601–612Google Scholar
  130. Radić V, Bliss A, Beedlow AC, Hock R, Miles E, Cogley JG (2013) Regional and global projections of 21st century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn. doi: 10.1007/s00382-013-1719-7 Google Scholar
  131. Raper SCB, Braithwaite RJ (2005) The potential for sea level rise: new estimates from glacier and ice cap area and volume distributions. Geophys Res Letters 32:L05502. doi: 10.1029/2004GL021981 Google Scholar
  132. Raper SCB, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi: 10.1038/nature04448 Google Scholar
  133. Rees HG, Collins DN (2006) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol Process 20:2157–2169Google Scholar
  134. Reijmer CH, Hock R (2008) A distributed energy balance model including a multi-layer sub-surface snow model. J Glaciol 54(184):61–72Google Scholar
  135. Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science 302(5644):434–437. doi: 10.1126/science.1087393 Google Scholar
  136. Robinson CT, Uehlinger U, Hieber M (2001) Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biol 46:1663–1672. doi: 10.1046/j.1365-2427.2001.00851.x Google Scholar
  137. Schiefer E, Menounos B, Wheate R (2007) Recent volume loss of British Columbia glaciers, Canada. Geophys Res Lett 34:L16503. doi: 10.1029/2007GL030780
  138. Shepard et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102
  139. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5–6):1191–1209. doi: 10.1007/s00382-011-1057-6 Google Scholar
  140. Stahl K, Moore RD (2006) Influence of watershed glacier coverage on summer streamflow in British Columbia. Canada. Water Resour Res 42:W06201. doi: 10.1029/2006WR005022 Google Scholar
  141. Stahl K, Moore RD, Shea JM, Hutchinson D, Cannon AJ (2008) Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour Res 44:W02422. doi: 10.1029/2007WR005956 Google Scholar
  142. Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi: 10.1029/2005GL023961 Google Scholar
  143. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. doi: 10.1126/science.1099192 Google Scholar
  144. van der Wal RSW, Wild M (2001) Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high-resolution GCM. Clim Dyn 18:359–366Google Scholar
  145. Weber M, Braun L, Mauser W, Prasch M (2010) Contribution of rain, snow and icemelt in the upper Danube today and in the future. Geogr Fis Din Quat 33:221–230Google Scholar
  146. Willis MG, Melkonian AK, Pritchard ME, Rivera A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys Res Lett 39:L17501Google Scholar
  147. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H). Hydrol Earth Syst Sc 14:1–24Google Scholar
  148. Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi: 10.1029/2008GL034816 Google Scholar
  149. Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geosci 3:642–646. doi: 10.1038/ngeo938 Google Scholar
  150. Yao TD, Pu JC, Lu AX, Wang YQ, Wu WS (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China and surrounding regions. Arc Antarc Alp Res 39:642–650Google Scholar
  151. Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50:101–111Google Scholar
  152. Zemp M, Jansson P, Holmlund P, Gärtner-Roer I, Kobelt T, Thee P, Haeberli W (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-1999) – Part 2: comparison of glaciological and volumetric mass balances. The Cryosphere 4:345–357Google Scholar
  153. Zemp M et al (2013) Uncertainties and re-analysis of glacier mass balance measurements. The Cryosphere Discuss 7: 789–839 (accepted)Google Scholar
  154. Zhao Q, Ye B, Ding Y, Zhang S, Yi S, Wang J, Shangguan D, Zhao C, Han H (2013) Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ Earth Sci 68(1):87–101. doi: 10.1007/s12665-012-1718-8 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Geophysical InstituteUniversity of AlaskaFairbanksUSA
  3. 3.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations