Surveys in Geophysics

, Volume 35, Issue 3, pp 739–764 | Cite as

Perspectives in Modelling Climate–Hydrology Interactions

  • Stefan HagemannEmail author
  • Tanja Blome
  • Fahad Saeed
  • Tobias Stacke


Various land–atmosphere coupling mechanisms exist that may lead to large-scale impacts on climate and hydrology. Some of them are still less understood and not adequately represented in state-of-the-art climate modelling. But, as the current generation of climate models enables consideration and implementation of important coupling processes, the present study provides perspectives for the modelling of relevant climate–hydrology interactions. On a more short-term perspective, these comprise anthropogenic land use and especially irrigation, which has been shown that it may even affect remote regions. On a long-term perspective, the coupling of hydrology to carbon cycle and vegetation becomes important, specifically the dynamics of permafrost and wetlands. Here, we present a review of current knowledge combined with some exemplary studies from a large-scale point of view. Therefore, we focus on climate–hydrology interactions that are relevant on scales utilized in the current or forthcoming global and regional climate modelling exercises.


Irrigation Land atmosphere feedbacks Land-use impacts Modelling perspectives Permafrost and wetland dynamics 



The authors acknowledge the financial support of T. Blome by the European Union FP7-ENV project PAGE21 under contract number GA282700. S. Hagemann was supported by funding from the European Union within the EMBRACE project (grant no. 282672). We also acknowledge previous work that was supported by funding from the European Union within the WATCH project (contract No. 036946).


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1042.
  2. Asharaf S, Dobler A, Ahrens B (2012) Soil moisture-precipitation feedback processes in the Indian summer monsoon season. J Hydrometeorol 13:1461–1474. doi: 10.1175/JHM-D-12-06.1 Google Scholar
  3. Asokan SM, Jarsjö J, Destouni G (2010) Vapor flux by evapotranspiration: effects of changes in climate, land-use and water-use. J Geophys Res 115:D24102. doi: 10.1029/2010JD014417 Google Scholar
  4. Barling R, Moore I, Grayson R (1994) A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour Res 30:1029–1044. doi: 10.1029/93WR03346 Google Scholar
  5. Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V (2010) Combined biogeophysical and biogeochemical effects of large-scale land-cover change in the MPI Earth system model. Biogeosciences 7:1383–1399. doi: 10.5194/bg-7-1383-2010 Google Scholar
  6. Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Letters 36:L22401. doi: 10.1029/2009GL039225 Google Scholar
  7. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi: 10.5194/gmd-4-677-2011 Google Scholar
  8. Beven K, Kirkby M (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69Google Scholar
  9. Bohn T, Lettenmaier D, Sathulur K, Bowling L, Podest E, McDonald K (2007) Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environ Res Lett 2:045015. doi: 10.1088/1748-9326/2/4/045015 Google Scholar
  10. Boike J, Roth K, Overduin PP (1998) Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour Res 34(3):355–363Google Scholar
  11. Bolton WR (2006) Dynamic modelling of the hydrologic processes in areas of discontinuous permafrost. Ph.D. dissertation, University of Alaska, Fairbanks, US, p 163Google Scholar
  12. Bonan G (1995) Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim 8:2691–2704Google Scholar
  13. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapor and climate. Clim Dyn 22:597–603. doi: 10.1007/s00382-004-0402-4 Google Scholar
  14. Bowling L, Lettenmaier DP (2010) Modeling the effects of lakes and wetlands on the water balance of arctic environments. J Hydrometeorol 11:276–295. doi: 10.1175/2009JHM1084.1 Google Scholar
  15. Breckle S-W, Geldyeva GV (2012) Dynamics of the Aral Sea in geological and historical times. In: Breckle S-W et al (eds) Aralkum—a man-made desert: the desiccated floor of the Aral Sea (Central Asia), ecological studies, vol 218. Springer, Berlin, pp 13–35. doi: 10.1007/978-3-642-21117-1_2
  16. Brown J, Ferrians OJ Jr., Heginbottom JA, Melnikov ES (eds.) (1997) Circum-Arctic map of permafrost and ground-ice conditions. U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources. Circum-Pacific Map Series CP-45, scale 1:10,000,000, Washington, DCGoogle Scholar
  17. Bullock A, Acreman M (2003) The role of wetlands in the hydrological cycle. Hydrol Earth Syst Sci 7:358–389. doi: 10.5194/hess-7-358-2003 Google Scholar
  18. Cess RD, Potter GL, Zhang MH, Blanchet JP, Chalita S, Colman R, Dazlich DA, Genio AD, Dymnikov V, Galin V, Jerrett D, Keup E, Lacis AA, LE Treut H, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Mitchell JF, Morcrette JJ, Norris PM, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo JM, Sokolov AS, Taylor KE, Washington WM, Wetherald RT, Yagai I (1991) Interpretation of snow-climate feedback as produced by 17 general circulation models. Science 253:888–892. doi: 10.1126/science.253.5022.888
  19. Christensen JH (1999) Relaxation of soil variables in a regional climate model. Tellus 51A:474–685Google Scholar
  20. Claussen M (2004) The global climate. In: Kabat P et al. (eds) Vegetation, water, humans and the climate. Global change—the IGBP series 24. Springer, Heidelberg, pp 33–57Google Scholar
  21. Coe M (1997) Simulating continental surface waters: an application to Holocene Northern Africa. J Clim 10:1680–1689Google Scholar
  22. Coe M (1998) A linked global model of terrestrial hydrologic processes: simulation of modern rivers, lakes, and wetlands. J Geophys Res (D Atmos) 103:8885–8899. doi: 10.1029/98JD00347 Google Scholar
  23. Coe M (2000) Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM. J Clim 13:686–704. doi: 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2 Google Scholar
  24. Coe M, Bonan G (1997) Feedbacks between climate and surface water in northern Africa during the middle Holocene. J Geophys Res (D Atmos) 102:11087–11101. doi: 10.1029/97JD00343 Google Scholar
  25. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187Google Scholar
  26. Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769Google Scholar
  27. De Rosnay P, Polcher J, Laval K, Sabre M (2003) Integrated parameterization of irrigation in the land surface model ORCHIDEE: validation over Indian Peninsula. Geophys Res Lett 30:1986. doi: 10.1029/2003GL018024 Google Scholar
  28. Decharme B, Douville H, Prigent C, Papa F, Aires F (2008) A new river flooding scheme for global climate applications: offline evaluation over South America. J Geophys Res (D Atmos) 113:D11110. doi: 10.1029/2007JD009376 Google Scholar
  29. Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C (2011) Global off-line evaluation of the ISBA-TRIP flood model. Clim Dyn 38:1–24. doi: 10.1007/s00382-011-1054-9 Google Scholar
  30. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  31. Destouni G, Jaramillo F, Prieto C (2013) Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change 3:213–217Google Scholar
  32. Dirmeyer P, Koster R, Guo ZAD (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198Google Scholar
  33. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59(60):143–156Google Scholar
  34. Douglas EM, Niyogi D, Frolking S, Yeluripati JB, Pielke RA Sr, Niyogi N, Vörösmarty CJ, Mohanty UC (2006) Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys Res Lett 33:L14403. doi: 10.1029/2006GL026550 Google Scholar
  35. Douglas EM, Beltrán-Przekurat A, Niyogi D, Pielke RA Sr, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—A mesoscale modeling perspective. Global Planet Change 67:117–128. doi: 10.1016/j.gloplacha.2008.12.007 Google Scholar
  36. Ekici A, Beer C, Hauck C, Hagemann S (2013) Improved soil physics for simulating high latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geosci Model Dev Discuss 6:2655–2698. doi: 10.5194/gmdd-6-2655-2013 Google Scholar
  37. Falloon P, Betts RA (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci Total Environ 408:5667–5687Google Scholar
  38. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678Google Scholar
  39. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture - atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099Google Scholar
  40. Frampton A, Painter SL, Lyon SW, Destouni G (2011) Nonisothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J Hydrol 403:352–359. doi: 10.1016/j.jhydrol.2011.04.010 Google Scholar
  41. Frampton A, Painter SL, Destouni G (2013) Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol J 21:271–280Google Scholar
  42. French HM (1990) Editorial. Permafr Periglac Process 1:1. doi: 10.1002/ppp.3430010102 Google Scholar
  43. French HM (2007) The periglacial environment, 3rd edn. Wiley, West Sussex, p 457Google Scholar
  44. Friborg T, Soegaard H, Christensen T, Lloyd C, Panikov N (2003) Siberian wetlands: where a sink is a source, Geophys Res Lett 30:CLM 5–1–CLM 5–4. doi: 10.1029/2003GL017797
  45. Gao X, Luo Y, Lin W, Zhao Z, Giorgi F (2003) Simulation of effects of land use change on climate in China by a regional climate model. Adv Atmos Sci 20(4):583–592Google Scholar
  46. Gedney N, Cox P, Huntingford C (2004) Climate feedback from wetland methane emissions. Geophys Res Lett 31:L20503. doi: 10.1029/2004GL020919 Google Scholar
  47. Gerten D (2013) A vital link: water and vegetation in the Anthropocene. Hydrol Earth Syst Sci Discuss 10:4439–4462. doi: 10.5194/hessd-10-4439-2013 Google Scholar
  48. Gerten D, Rost S, von Bloh W, Lucht W (2008) Causes of change in 20th century global river discharge. Geophys Res Lett 35:L20405. doi: 10.1029/2008GL035258 Google Scholar
  49. Gerten D, Hagemann S, Biemans H, Saeed F, Konzmann M (2011) Climate change and irrigation: feedbacks and impacts. WATCH technical report 47Google Scholar
  50. Gordon LJ, Steffen W, Jonsson BF, Folke C, Falkenmark M, Johannessen A (2005) Human modification of global water vapour flows from the land surface. Proc Natl Acad Sci USA 102:7612–7617Google Scholar
  51. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi: 10.2307/1941811 Google Scholar
  52. Göttel H, Alexander J, Keup-Thiel E, Rechid D, Hagemann S, Blome T, Wolf A, Jacob D (2008) Influence of changed vegetations fields on regional climate simulations in the Barents Sea Region. Clim Change 87:35–50. doi: 10.1007/s10584-007-9341-5 Google Scholar
  53. Gouttevin I, Krinner G, Ciais P, Polcher J, Legout C (2012) Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology. Cryosphere 6:407–430. doi: 10.5194/tc-6-407-2012 Google Scholar
  54. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39:1329–1348Google Scholar
  55. Harding RJ, Best M, Blyth E, Hagemann S, Kabat P, Tallaksen LM, Warnaars T, Wiberg D, Weedon GP, van Lanen H, Ludwig F, Haddeland I (2011) Current knowledge of the terrestrial global water cycle. J Hydrometeorol 12:1149–1156. doi: 10.1175/JHM-D-11-024.1 Google Scholar
  56. Hashimoto S, Wattenbach M, Smith P (2011) A new scheme for initializing process-based ecosystem models by scaling soil carbon pools. Ecolog Model 222:3598–3602Google Scholar
  57. Haugen RK, Slaughter CW, Howe KE, Dingman SL (1982) Hydrology and climatology of the Caribou-Poker Creeks Research Watershed, Alaska, CRREL report 82-26, p 42Google Scholar
  58. Hinzman LD, Kane DI (1991) Snow hydrology of a headwater arctic basin, 2. Conceptual analysis and computer modeling. Water Resour Res 27(6):95–100Google Scholar
  59. International Permafrost Association (1998) Circumpolar active-layer permafrost system (CAPS), version 1.0Google Scholar
  60. Jacob D, Bärring L, Christensen OB, Christensen JH, Hagemann S, Hirschi M, Kjellström E, Lenderink G, Rockel B, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(Suppl 1):31–52Google Scholar
  61. Karim A, Veizer J (2002) Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalaya: implications from hydrogen and oxygen isotopes in river water. J Geophys Res 107(D18):4362. doi: 10.1029/2000JD000253 Google Scholar
  62. Khan S, Rana T, Gabriel HF, Ullah M (2008) Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol J 16:1635–1654. doi: 10.1007/s10040-008-0336-8 Google Scholar
  63. Kleinen T, Brovkin V, Getzieh R (2012) A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9:235–248. doi: 10.5194/bg-9-235-2012 Google Scholar
  64. Koren V, Schaake J, Mitchell K, Duan OY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585Google Scholar
  65. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140Google Scholar
  66. Koster RD, Guo Z, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2006) GLACE: the global land-atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610Google Scholar
  67. Koven CD, Riley WJ, Stern A (2012) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J Clim. doi: 10.1175/JCLI-D-12-00228.1 Google Scholar
  68. Krinner G, Lézine A-M, Braconnot P, Sepulchre P, Ramstein G, Grenier C, Gouttevin I (2012) A reassessment of lake and wetland feedbacks on the North African Holocene climate. Geophys Res Lett 39:L07701. doi: 10.1029/2012GL050992 Google Scholar
  69. Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Christensen JH, Gobiet A, Saeed F, Hagemann S, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ. doi: 10.1016/j.scitotenv.2013.01.051 Google Scholar
  70. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z-L, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:MS000 045. doi: 10.1029/2011MS000045
  71. Lee E, Chase T, Rajagopalan B, Barry R, Wiggs T, Lawrence P (2009) Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int J Climatol 29:573–581. doi: 10.1002/joc.1721 Google Scholar
  72. Levin D, Hopper I, Ernst F, Trivett M, Worthy N (2000) Evidence for a link between climate and northern wetland methane emissions. J Geophys Res (D Atmos) 105:4031–4038. doi: 10.1029/1999JD901100 Google Scholar
  73. Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22:2248–2255. doi: 10.1175/2008JCLI2703.1 Google Scholar
  74. Loew A, Holmes T, de Jeu R (2009) The European heat wave 2003: early indicators from multisensoral microwave remote sensing? J Geophys Res 114:D05103Google Scholar
  75. Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire A, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868. doi: 10.1175/2011JHM1327.1 Google Scholar
  76. Luo LF, Robock A, Vinnikov KY, Schlosser CA, Slater AG, Boone A, Braden H, Cox P, de Rosnay P, Dickinson RE, Dai YJ, Duan QY, Etchevers P, Henderson-Sellers A, Gedney N, Gusev YM, Habets F, Kim JW, Kowalczyk E, Mitchell K, Nasonova ON, Noilhan J, Pitman AJ, Schaake J, Shmakin AB, Smirnova TG, Wetzel P, Xue YK, Yang ZL, Zeng QC (2003) Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. J Hydrometeorol 4:334–351Google Scholar
  77. Mackay JR (1988) Catastrophic lake drainage, Tuktoyaktuk peninsula area, District of Mackenzie. Geological Survey of Canada, paper 88-1D: 83–90Google Scholar
  78. Mahajan PN, Talwalkar DR, Chinthalu GR, Rajamaniet S (1995) Use of INSAT winds for better depiction of monsoon depression over Indian region. Meteorol Appl 2:333–339Google Scholar
  79. Marengo J, Nobre CA (2001) The hydroclimatological framework in Amazonia. In: McClaine M, Victoria R, Richey J (eds) Biogeochemistry of the Amazon basin. Oxford University Press, Oxford, pp 17–42Google Scholar
  80. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555. doi: 10.1890/08-2025.1 Google Scholar
  81. Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteor Soc 81:313–318Google Scholar
  82. Mishra V, Cherkauer K, Bowling L (2010) Parameterization of lakes and wetlands for energy and water balance studies in the great lakes region. J Hydrometeorol 11:1057–1082. doi: 10.1175/2010JHM1207.1 Google Scholar
  83. Niu G-Y, Yang Z-L (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7:937–952. doi: 10.1175/JHM538.1 Google Scholar
  84. O’Connor F, Boucher O, Gedney N, Jones C, Folberth G, Coppell R, Friedlingstein P, Collins W, Chappellaz J, Ridley J, Johnson C (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48:RG4005. doi: 10.1029/2010RG000326 Google Scholar
  85. Oleson K, Dai Y, Bonan GB, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X (2004): Technical description of the community land model (CLM). NCAR technical note NCAR/TN-461 + STR. doi: 10.5065/D6N877R0
  86. Oyama MD, Nobre CA (2004) Climatic consequences of a large-scale desertification in northeast Brazil: a GCM simulation study. J Clim 17:3203–3213Google Scholar
  87. Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land-use changes. J Clim 22:114–132. doi: 10.1175/2008JCLI2390.1 Google Scholar
  88. Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci USA 104:15242–15247Google Scholar
  89. Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DDS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A 360:1705–1719. doi: 10.1098/rsta.2002.1027 Google Scholar
  90. Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res 115:D16120. doi: 10.1029/2010JD014122 Google Scholar
  91. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333. doi: 10.1063/1.1745010 Google Scholar
  92. Ridder De (2008) Soil temperature spin-up in land surface schemes. Theor Appl Climatol. doi: 10.1007/s00704-008-0011-y Google Scholar
  93. Ringeval B, De Noblet-Ducoudré N, Ciais P, Bousquet P, Prigent C, Papa F, Rossow W (2010) An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochem Cycles 24:GB2003. doi: 10.1029/2008GB003354 Google Scholar
  94. Ringeval B, Friedlingstein P, Koven C, Ciais P, de Noblet-Ducoudré N, Decharme B, Cadule P (2011) Climate-CH4 feedback from wetlands and its interaction with the climate-CO2 feedback. Biogeosciences 8:2137–2157. doi: 10.5194/bg-8-2137-2011 Google Scholar
  95. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac Process 19:137–156. doi: 10.1002/ppp.615 Google Scholar
  96. Romanovskii NN, Hubberten H-W, Gavrilov AV, Tumskoy VE, Tipenko GS, Grigoriev MN (2000) Thermokarst and land-ocean interactions, Laptev Sea region, Russia. Permafr Periglac Process 11:137–152Google Scholar
  97. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008a) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi: 10.1029/2007WR006331 Google Scholar
  98. Rost S, Gerten D, Heyder U (2008b) Human alterations of the terrestrial water cycle through land management. Adv Geosci 18:43–50. doi: 10.5194/adgeo-18-43-2008 Google Scholar
  99. Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33:159–175. doi: 10.1007/s00382-008-0445-z Google Scholar
  100. Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian Summer Monsoon. Geophys Res Letters 36:L20711. doi: 10.1029/2009GL040625 Google Scholar
  101. Saeed F, Hagemann S, Jacob D (2011) A framework for the evaluation of the South Asian Summer Monsoon in a regional climate model applied to REMO. Int J Climatol. doi: 10.1002/joc.2285 Google Scholar
  102. Saeed F, Hagemann S, Saeed S, Jacob D (2012) Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation. Clim Dyn. doi: 10.1007/s00382-012-1480-3 Google Scholar
  103. Schramm I, Boike J, Bolton WR, Hinzman LD (2007) Application of TopoFlow, a spatially distributed hydrological model, to the Imnavait Creek watershed, Alaska. J Geophys Res 112:46. doi: 10.1029/2006JG000326 Google Scholar
  104. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi: 10.1641/B580807 Google Scholar
  105. Seneviratne SI, Stöckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. In: Brönnimann et al. (ed) Climate variability and extremes during the past 100 years. Advances in Global Change Research 33, Springer, Heidelberg. (Book chapter)Google Scholar
  106. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209Google Scholar
  107. Seneviratne SI, Corti T, Davin E, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi: 10.1016/j.earscirev.2010.02.004 Google Scholar
  108. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change 77:85–96. doi: 10.1016/j.gloplacha.2011.03.004 Google Scholar
  109. Siebert S, Döll P, Hoogeveen J, Faurés J-M, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547Google Scholar
  110. Singh D, Bhadram CVV, Mandal GS (1995) New regression model for Indian summer monsoon rainfall. Meteorol Atmos Phys 55:77–86. doi: 10.1007/BF01029603 Google Scholar
  111. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185Google Scholar
  112. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308:1429Google Scholar
  113. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996Google Scholar
  114. Stacke T, Hagemann S (2012) Development and validation of a global dynamical wetlands extent scheme. Hydrol Earth Syst Sci 16:2915–2933. doi: 10.5194/hess-16-2915-2012 Google Scholar
  115. Staehli M, Jansson P-E, Lundin LC (1999) Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour Res 35:95–103. doi: 10.1029/1998WR900045 Google Scholar
  116. St-Hilaire F, Wu J, Roulet N, Frolking S, Lafleur P, Humphreys E, Arora V (2010) McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments. Biogeosciences 7:3517–3530. doi: 10.5194/bg-7-3517-2010 Google Scholar
  117. Swenson SC, Lawrence DM, Lee H (2012) Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J Adv Model Earth Syst 4. doi: 10.1029/2012MS000165
  118. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23. doi: 10.1029/2008GB003327
  119. Taylor CM, Lambin EF, Stephenne N, Harding RJ, Essery RLH (2002) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629Google Scholar
  120. Ter Maat HW, Hutjes RWA, Ohba R, Ueda H, Bisselink B, Bauer T (2006) Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia. Global Planet Change 54:183–201Google Scholar
  121. Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:L02404. doi: 10.1029/2008GL036584 Google Scholar
  122. Tuinenburg OA, Hutjes RWA, Stacke T, Wiltshire A, Lucas-Picher P (2013) Effects of irrigation in India on the atmospheric water budget. J Hydrometeorol (submitted) Google Scholar
  123. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen ACM, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Van Beljaars ACM, de Berg L, Bidlot J, Bormann N, Caires S, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, McNally AP, Mahfouf JF, Jenne R, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The Era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 Google Scholar
  124. van der Velde Y, Lyon SW, Destouni G (2013) Data-driven regionalization of river discharges and emergent land cover-evapotranspiration relationships across Sweden. J Geophys Res 118:1–12. doi: 10.1002/jgrd.50224 Google Scholar
  125. Verseghy DL (1991) Class—a Canadian land surface scheme for GCMs. I. Soil model. Int J Climatol 11:111–133Google Scholar
  126. Vörösmarty C, Gutowski W, Person M, Chen T-C, Case D (1993) Linked atmosphere-hydrology models at the macroscale. In: Wilkinson W (ed) Macroscale modeling of the hydrosphere, no. 214 in International Association of Hydrological Sciences, pp 3–27Google Scholar
  127. Walker HJ (1978) Lake tapping in the Colville River delta. In: Permafrost, proceedings of the third international conference on permafrost, 10–13 July, Edmonton, Alberta, Canada. National Research Council of Canada, Ottawa, vol 1, pp 233–238Google Scholar
  128. Walsh JE, Anisimov O, Hagen JOM, Jakobsson T, Oerlemans J, Prowse TD, Romanovsky V, Savelieva N, Serreze M, Shiklomanov A, Shiklomanov I, Solomon S, Arendt A, Atkinson D, Demuth MN, Dowdeswell J, Dyurgerov M, Glazovsky A, Koerner RM, Meier M, Reeh N, Sigurosson O, Steffen K, Truffer M (2005) Cryosphere and hydrology. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment, chapter 6. Cambridge University Press, Cambridge, pp 184–242Google Scholar
  129. Willmott CJ, Matsuura K (2009) Terrestrial precipitation: 1900–2008 gridded monthly time series. University of Delaware, Newark.
  130. Woo MK (1986) Permafrost hydrology in North America. Atmos Ocean 24(3):201–234Google Scholar
  131. Woo M, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254Google Scholar
  132. Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modelling. Biogeosciences 4:125–136Google Scholar
  133. Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2002) Impacts of wildfire on the permafrost in the boreal forests of interior Alaska. J Geophys Res 107:8148. doi: 10.1029/2001JD000438, [printed 108(D1), 2003]
  134. Yu Z, Pollard D, Cheng L (2006) On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol 331:110–124. doi: 10.1016/j.jhydrol.2006.05.021 Google Scholar
  135. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin III FS (2006) Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33. doi: 10.1029/2006GL027484

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stefan Hagemann
    • 1
    Email author
  • Tanja Blome
    • 1
  • Fahad Saeed
    • 2
  • Tobias Stacke
    • 1
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany
  2. 2.Climate Service CenterHelmholtz-Zentrum GeesthachtHamburgGermany

Personalised recommendations