Surveys in Geophysics

, Volume 35, Issue 3, pp 681–722 | Cite as

Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle

  • Nicolas ReulEmail author
  • Severine Fournier
  • Jaqueline Boutin
  • Olga Hernandez
  • Christophe Maes
  • Bertrand Chapron
  • Gaël Alory
  • Yves Quilfen
  • Joseph Tenerelli
  • Simmon Morisset
  • Yann Kerr
  • Susanne Mecklenburg
  • Steven Delwart


While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world’s largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.


Sea surface salinity SMOS satellite Passive microwave remote sensing Oceanic freshwater cycle 



Work presented in this paper was partly done under ESA support in the context of the development of the SMOS level 2/Expert Support Laboratory, ESA Support to Science Element SMOS + SOS and SMOS + STORM projects. CNES also partly funded these activities in the frame of the Centre Aval de Traitement des Données SMOS (CATDS) and of the SMOS/ESA GLOSCAL Cal/Val projects. We are indebted to Micha Rijkenberg (Koninklijk Nederlands Instituut voor Onderzoek der Zee Department of Biological Oceanography (BIO)) for giving us access to the Geotraces Leg 2 CTD data, to F. Gaillard (LPO/IFREMER) for providing ISAS maps version 6 (see Gilles Reverdin (LOCEAN/CNRS) is responsible for French salinity drifter deployment program; he supervised the quality control of these drifter data set and is warmly acknowledged. These data are available on We thank Nicolas Martin for data processing. We are also indebted to JéromeVialard, Matthieu Lengaigne and Emmanuel Vincent for their very helpful comments about SSS variability in the tropical Indian Ocean and about tropical cyclones interactions with the Amazon plume, Thierry Delcroix about SSS variability in the tropical Pacific Ocean. SSM/I data have been processed by Remote Sensing System ( The global ocean heat flux and evaporation products were provided by the WHOI OAFlux project ( funded by the NOAA Climate Observations and Monitoring (COM) program. We thank the two anonymous referees and Doug Vandemark for their very useful comments and detailed corrections, which were very constructive and which helped us to improve our paper.


  1. Alory G, Maes C, Delcroix T, Reul N, Illig S (2012) Seasonal dynamics of sea surface salinity off Panama: the far eastern Pacific fresh pool. J Geophys Res 117:C04028Google Scholar
  2. Anderson SP, Weller RA, Lukas R (1996) Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: observations and 1D model results. J Clim 9:3056–3085CrossRefGoogle Scholar
  3. Baklouti M, Devenon JL, Bourret A, Froidefond JM, Ternon JF, Fuda JL (2007) New insights in the French Guiana continental shelf circulation and its relation to the North Brazil Current retroflection. J Geophys Res 112:C02023Google Scholar
  4. Balaguru KP, Saravanan SR, Leung LR, Xu Z, Li M, Hsieh JS (2012) Ocean barrier layers’ effect on tropical cyclone intensification. PNAS. doi: 10.1073/pnas.1201364109 Google Scholar
  5. Banks CJ, Gommenginger CP, Srokosz MA, Snaith HM (2012) Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. IEEE Trans Geosci Remote Sens 50:1688–1702CrossRefGoogle Scholar
  6. Benway HM, Mix AC (2004) Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific, Earth Planet. Sci Lett 224:493–507Google Scholar
  7. Binet D, Marchal E (1993) The large marine ecosystem of shelf areas in the Gulf of Guinea: long-term variability induced by climatic changes. In: Sherman K et al (eds) Large marine ecosystems: stress, mitigation, and sustainability. American Association for the Advancement of Science, Washington, pp 104–118Google Scholar
  8. Bingham FM, Foltz GR, McPhaden MJ (2010) Seasonal cycles of surface layer salinity in the Pacific Ocean. Ocean Sci 6:775–787CrossRefGoogle Scholar
  9. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 509–546CrossRefGoogle Scholar
  10. Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954CrossRefGoogle Scholar
  11. Bornhold BD (1973) Late quaternary sedimentation in the eastern Angola Basin. Massachusetts Institute of Technology, pp 1–213 (thesis)Google Scholar
  12. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114:C06023Google Scholar
  13. Boutin J, Martin N, Yin X, Reul N, Spurgeon P (2012a) First assessment of SMOS data over open Ocean: part II-sea surface salinity. IEEE Trans Geosci Remote Sens 50(5) Part 1: 1662–1675Google Scholar
  14. Boutin J, Martin N, Reverdin G, Yin X, Gaillard F (2012b) Sea surface freshening inferred from SMOS and Argo salinity: impact of rain. Ocean Sci Discuss 9:3331–3357Google Scholar
  15. Boyer TP, Levitus S (2002) Harmonic analysis of climatological sea surface salinity. J Geophys Res 107(C12):8006Google Scholar
  16. Braga ES, Andrie C, Bourles B, Vangriesheim A, Baurand F, Chuchla R (2004) Congo river signature and deep circulation in the eastern Guinea Basin. Deep Sea Res Part I Oceanogr Res Papers 51(8):1057–1073CrossRefGoogle Scholar
  17. Cherubin LM, Richardson PL (2007) Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep Sea Res Part I Oceanogr Res Papers 54(9):1451–1473CrossRefGoogle Scholar
  18. Conmy RN, Coble PG, Cannizzaro JP, Heil CA (2009) Influence of extreme storm events on West Florida shelf CDOM distributions. J Geophys Res 114:G00F04Google Scholar
  19. Cravatte S, Delcroix T, Zhang D, McPhaden MJ, Leloup J (2009) Observed freshening and warming of the western Pacific warm pool. Clim Dyn 33:565–589CrossRefGoogle Scholar
  20. Dare RA, McBride JL (2011) The threshold sea surface temperature condition for tropical cyclogenesis. J Clim 24:4570–4576Google Scholar
  21. De Boyer Montégut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res 112:C06011Google Scholar
  22. Del Vecchio R, Subramaniam A (2004) Influence of the Amazon River on the surface optical properties of the Western Tropical North Atlantic Ocean. J Geophys Res 109:C11001CrossRefGoogle Scholar
  23. Delcroix T, Alory G, Cravatte S, Corrège T, McPhaden MJ (2011) A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep Sea Res Part I 58(1):38–48Google Scholar
  24. DeMaster DJ, Smith W, Nelson DM, Aller JY (1996) Biogeochemical processes in Amazon shelf waters: chemical distributions and uptake rates of silicon, carbon and nitrogen. Cont Shelf Res 16:617–643CrossRefGoogle Scholar
  25. Dessier A, Donguy J (1994) The sea-surface salinity in the tropical Atlantic between 10-degrees-S and 30-degrees-N—seasonal and interannual variations (1977–1989). Deep Sea Res Part I Oceanogr Res Papers 41(1):81–100CrossRefGoogle Scholar
  26. Dickson RR, Yashayaev I, Meincke J, Turrell W, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837CrossRefGoogle Scholar
  27. D’Sa EJ, Hu C, Muller-Karger FE, Carder KL (2002) Estimation of colored dissolved organic matter and salinity fields in case 2 waters using SeaWiFS: examples from Florida Bay and Florida Shelf. J Earth Syst Sci 111:197–207CrossRefGoogle Scholar
  28. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458CrossRefGoogle Scholar
  29. Eisma D, Van Bennekom AJ (1978) The Zaire River and estuary and the Zaire outflow in the Atlantic Ocean. Neth J Sea Res 12(3/4):255–272CrossRefGoogle Scholar
  30. Ferrari GM, Dowell MD (1998) CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea. Estuar Coast Shelf Sci 47:91–105CrossRefGoogle Scholar
  31. Ffield A (2005) North Brazil current rings viewed by TRMM microwave imager SST and the influence of the Amazon Plume. Deep Sea Res I 52:137–160CrossRefGoogle Scholar
  32. Ffield A (2007) Amazon and Orinoco River plumes and NBC rings: bystanders or participants in hurricane events? J Clim 20:316–333CrossRefGoogle Scholar
  33. Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):143–180CrossRefGoogle Scholar
  34. Flagg CN, Gordon RL, McDowell S (1986) Hydrographic and current observations on the continental slope and shelf of the western equatorial Atlantic. J Phys Oceanogr 16(8):1412–1429CrossRefGoogle Scholar
  35. Foltz GR, McPhaden JM (2009) Impact of barrier layer thickness on SST in the central tropical North Atlantic. J Clim 22:285–299CrossRefGoogle Scholar
  36. Font J, Camps A, Borges A, Martín-Neira M, Boutin J, Reul N, Kerr YH, Hahne A, Mecklenburg S (2010) SMOS: the challenging sea surface salinity measurement from space. Proc IEEE 98(5):649–665CrossRefGoogle Scholar
  37. Font J, Boutin J, Reul N, Spurgeon P, Ballabrera-Poy J, Chuprin A, Gabarró C, Gourrion J, Guimbard S, Hénocq C, Lavender S, Martin N, Martínez J, McCulloch M, Meirold-Mautner I, Mugerin C, Petitcolin F, Portabella M, Sabia R, Talone M, Tenerelli J, Turiel A, Vergely JL, Waldteufel P, Yin X, Zine X, Delwart S (2013) SMOS first data analysis for sea surface salinity determination. Int J Remote Sens. doi: 10.1080/01431161.2012.716541 Google Scholar
  38. Froelich PN, Atwood DK, Giese GS (1978) Influence of Amazon River discharge on surface salinity and dissolved silicate concentration in the Caribbean Sea. Deep Sea Res 25(8):735–744CrossRefGoogle Scholar
  39. Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T (2009) Quality control of large Argo datasets. J Atmos Ocean Tech 26:337–351CrossRefGoogle Scholar
  40. Garzoli SL, Ffield A, Johns WE, Yao Q (2004) North Brazil current retroflection and transports. J Geophys Res 109:C01013Google Scholar
  41. Goni GJ, Johns W (2001) A census of North Brazil current rings observed from T/P altimetry: 1992–1998. Geophys Res Let 28(1):1–4Google Scholar
  42. Gordon A, Guilivi CF (2008) Sea surface salinity trends over 50 years within the subtropical North Atlantic. Oceanography 20(1):20–29CrossRefGoogle Scholar
  43. Gouriou Y, Delcroix T (2002) Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. J Geophys Res 107:3185CrossRefGoogle Scholar
  44. Grodsky SA, Reul N, Lagerloef G, Reverdin G, Carton JA, Chapron B, Quilfen Y, Kudryavtsev VN, Kao HY (2012) Haline hurricane wake in the Amazon/Orinoco plume: a QUARIUS/SACD and SMOS observations. Geophys Res Lett 39:L20603CrossRefGoogle Scholar
  45. Grunseich G, Subrahmanyam B, Murty VSN, Giese BS (2011) Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. J Geophys Res 116:C11013CrossRefGoogle Scholar
  46. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error-estimates. J Phys Oceanogr 13(7):1093–1104CrossRefGoogle Scholar
  47. Hellweger F, Gordon A (2002) Tracing Amazon River water into the Caribbean Sea. J Marine Res 60:537–549CrossRefGoogle Scholar
  48. Hisard P (1980) Observation de réponses de type “El Niño” dans l’Atlantique tropical oriental, Golfe de Guinée. Oceanol Acta 3:69–78Google Scholar
  49. Hu C, Montgomery ET, Schmitt RW, Muller-Karger FE (2004) The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep Sea Res Part II 51:1151–1171CrossRefGoogle Scholar
  50. Johns WE, Lee TN, Schott FA, Zantopp RJ, Evans RH (1990) The north Brazil current retroflection: seasonal structure and eddy variability. J Geophys Res 95:22103–22120CrossRefGoogle Scholar
  51. Katsaros KB, Buettner KJK (1969) Influence of rainfall on temperature and salinity at the Ocean surface. J Appl Meteorol 8:15–18CrossRefGoogle Scholar
  52. Kerr Y, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela MJ, Font J, Reul N, Gruhier C (2010) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687CrossRefGoogle Scholar
  53. Klein LA, Swift CT (1977) Improved model for dielectric constant of seawater at microwave frequencies. IEEE Trans Antennas Propag 25:104–111Google Scholar
  54. Koleshnikov AG (1973) Equalant I and Equalant II, physical oceanography. UNESCO Paris 1:1–289Google Scholar
  55. Lagerloef GSE (2012) Satellite mission monitors Ocean surface Salinity. Eos Trans AGU 93(25):233. doi: 10.1029/2012EO250001 CrossRefGoogle Scholar
  56. Lagerloef GSE, Mitchum G, Lukas R, Niiler P (1999) Tropical Pacific near surface currents estimated from altimeter, wind and drifter data. J Geophys Res 104:23313–23326Google Scholar
  57. Lagerloef GSE, Colomb FR, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G, Swift C (2008) The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81CrossRefGoogle Scholar
  58. Lagerloef GSE, Boutin J, Chao Y, Delcroix T, Font J, Niiler P, Reul N, Riser S, Schmitt R, Stammer D, Wentz F (2010) Resolving the global surface salinity field and variations by blending satellite and in situ observations, Oceanobs’09: sustained Ocean observations and information for society, Venise, Italy, 21–25 September 2009, ESA Publication WPP-306Google Scholar
  59. Lefèvre N (2009) Low C02 concentrations in the gulf of guinea during the upwelling season in 2006. Mar Chem 113(1–2):93CrossRefGoogle Scholar
  60. Lentz SJ (1995) Seasonal-variations in the horizontal structure of the Amazon plume inferred from historical hydrographic data. J Geophys Res 100(C2):2391–2400Google Scholar
  61. Lentz SJ, Limeburner R (1995) The Amazon River Plume during AMASSEDS: spatial characteristics and salinity variability. J Geophys Res 100:2355–2375CrossRefGoogle Scholar
  62. Maes C (2008) On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. J Geophys Res 113:C03027Google Scholar
  63. Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29(24):2206CrossRefGoogle Scholar
  64. Maes C, Picaut J, Belamari S (2005) Importance of salinity barrier layer for the buildup of El Niño. J Clim 18:104–118CrossRefGoogle Scholar
  65. Meade RH, Nordin CF, Hernandez DP, Mejia A, Godoy JMP (1983) Sediment and water discharge in Rio Orinoco, Venezuela and Colombia. In: Proceedings of the 2nd international symposium on river sedimentation. Water Resources and Electric Poers Press, Beijing, China, pp 1134–1144Google Scholar
  66. Mecklenburg S, Drusch M, Kerr YH, Font J, Martin-Neira M, Delwart S, Buenadicha G, Reul N, Daganzo-Eusebio E, Oliva R, Crapolicchio R (2012) ESA’s soil moisture and Ocean salinity mission: mission performance and operations. IEEE Trans Geosci Remote Sens 50(5) Part 1:1354–1366Google Scholar
  67. Merle J (1980) Variabilité thermique annuelle et interannuelle de l’océan Atlantique équatorial est. L’hypothèse d’un “ El Niño “ Atlantique. Oceanol Acta 3:209–220Google Scholar
  68. Meulenbergh J (1968) Diffusion des eaux du fleuve Congo dans les eaux de l’Atlantique Sud. Acad R Sci Outre Mer Bruxelles 16(6):148Google Scholar
  69. Meybeck M, Ragu A (1997) River discharges to the oceans: an assessment of suspended solids, major ions, and nutrients. IAHS Publ 243:1–245Google Scholar
  70. Michel S, Chapron B, Tournadre J, Reul N (2007) Sea surface salinity variability from a simplified mixed layer model of the global ocean. Ocean Sci Discuss 4:41–106CrossRefGoogle Scholar
  71. Mignot J, de Boyer Montégut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J Geophys Res 112:C10010CrossRefGoogle Scholar
  72. Miller R, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys Res Lett 22:417–420CrossRefGoogle Scholar
  73. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21CrossRefGoogle Scholar
  74. Molleri GSF, de Novo EMLM, Kampel M (2010) Space-time variability of the Amazon River plume based on satellite ocean color. Cont Shelf Res 30(3–4):342–352Google Scholar
  75. Moran MA, Sheldon WM, Sheldon JE (1999) Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22:55–64CrossRefGoogle Scholar
  76. Morrow R, Valladeau G, Sallee J-B (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77(4):351–366CrossRefGoogle Scholar
  77. Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333:56–59CrossRefGoogle Scholar
  78. Muller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R (1989) Pigment distribution in the Caribbean Sea: observations from space. Prog Oceanogr 23:23–64CrossRefGoogle Scholar
  79. Muller-Karger FE, Richardson PL, McGillicuddy D (1995) On the offshore dispersal of the Amazon’s plume in the North Atlantic. Deep Sea Res Part I 42:2127–2137CrossRefGoogle Scholar
  80. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Ramesh Kumar MR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclones- induced surface cooling in the Bay of Bengal. J Geophys Res 117:C12020CrossRefGoogle Scholar
  81. Neumann G (1969) Seasonal salinity variations in the upper strata of the western tropical Atlantic ocean-I. Sea surface salinities. Deep Sea Res 16:165–177Google Scholar
  82. Nittrouer CA, Demaster DJ (1986) Sedimentary processes on the Amazon continental shelf: past, present and future research. Cont Shelf Res 6:5–30CrossRefGoogle Scholar
  83. Obernosterer I, Herndl GJ (2000) Differences in the optical and biological reactivity of the humic and non-humic DOC component in two contrasting coastal marine environments. Limnol Oceanogr 45:1120–1129CrossRefGoogle Scholar
  84. Ostapoff F, Tarbeyev Y, Worthem S (1973) Heat flux and precipitation estimates from oceanographic observations. Science 180:960–962CrossRefGoogle Scholar
  85. Palacios SL, Peterson TD, Kudela RM (2009) Development of synthetic salinity from remote sensing for the Columbia River Plume. J Geophys Res 114:C00B05Google Scholar
  86. Perry GD, Duffy PB, Miller NL (1996) An extended data set of river discharges for validation of general circulation models. J Geophys Res 101:21339–21349CrossRefGoogle Scholar
  87. Piterbarg LI, Ostrovskii AG (1997) Advection and diffusion in random media: implications for sea surface temperature anomalies. Kluwer Academic, New YorkGoogle Scholar
  88. Piton B, Wacongne S (1985) Unusual amounts of very saline subsurface water in the eastern Gulf of Guinea in May 1984. Tropical Ocean-Atmosphere Newsletter, pp 325–328Google Scholar
  89. Price JF (2009) Metrics of hurricane-ocean interaction: vertically-integrated or vertically- averaged ocean temperature? Ocean Sci 5:351–368CrossRefGoogle Scholar
  90. Reul N, Tenerelli J (2011) SMOS level 3 SSS research products—product validation document—reprocessed year 2010. CECOS/CNES/IFREMER/CATDS Techn Doc. Available from
  91. Reul N, Saux-Picart S, Chapron B, Vandemark D, Tournadre J, Salisbury J (2009) Demonstration of ocean surface salinity microwave measurements from space using AMSR-E over the Amazon plume. Geophys Res Lett 36:L13607CrossRefGoogle Scholar
  92. Reul N, Tenerelli J, Boutin J, Chapron B, Paul F, Brion E, Gaillard F, Archer O (2012) Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half of 2010. IEEE Trans Geosci Remote Sens 50(5):1636–1647CrossRefGoogle Scholar
  93. Reverdin G, Kestenare E, Frankignoul C, Delcroix T (2007) Sea surface salinity in the Atlantic Ocean (30°S–50°N). Prog Oceanogr 73:311–340CrossRefGoogle Scholar
  94. Reverdin G, Morisset S, Boutin J, Martin N (2012) Rain-induced variability of near sea- surface T and S from drifter data. J Geophys Res 117:C02032Google Scholar
  95. Richardson PL, McKee T (1984) Average seasonal variation of the Atlantic equatorial currents from historical ship drifts. J Phys Oceanogr 14(7):1226–1238CrossRefGoogle Scholar
  96. Ruf CS, Swift CT, Tanner AB, Le Vine DM (1988) Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans Geosci Remote Sens 26:597–611CrossRefGoogle Scholar
  97. Salisbury J, Vandemark D, Campbell J, Hunt C, Wisser D, Reul N, Chapron B (2011) Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters. J Geophys Res 116:C00H02Google Scholar
  98. Schlössel P, Soloviev A, Emery WJ (1997) Cool and freshwater skin of the ocean during rainfall. Bound Layer Meteorol 82(3):439–474CrossRefGoogle Scholar
  99. Schmitt RW(2008) Salinity and the global water cycle. Oceanography 21(1):12–19Google Scholar
  100. Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Niño-Southern Oscillation using sea surface salinity observations. J Geophys Res 116:C06016Google Scholar
  101. Smith WO, Demaster DJ (1996) Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Cont Shelf Res 16(3):291–319CrossRefGoogle Scholar
  102. Soloviev A, Lukas R (1996) Observation of spatial variability of diurnal thermocline and rainformed halocline in the Western Pacific warm pool. J Phys Oceanogr 26:2529–2538CrossRefGoogle Scholar
  103. Steven DM, Brooks AL (1972) Identification of Amazon River water at Barbados, W. Indies, by salinity and silicate measurements. Mar Biol 14(4):345–348CrossRefGoogle Scholar
  104. Ternon JF, Oudot C, Dessier A, Diverres D (2000) A seasonal tropical sink for atmospheric C02 in the Atlantic Ocean: the role of the Amazon River discharge. Mar Chem 68(3):183–201CrossRefGoogle Scholar
  105. Terray L, Corre L, Cravatte S, Delcroix T, Reverdin G, Ribes A (2011) Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J Clim 25:958–977CrossRefGoogle Scholar
  106. Twardowski MS, Donaghay PL (2001) Separating in situ and terrigenous sources of absorption by dissolved material in coastal waters. J Geophys Res 106(C2):2545–2560Google Scholar
  107. UNESCO (1985) The international system of units (SI) in oceanography, UNESCO technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, FranceGoogle Scholar
  108. Van Bennekom AJ, Berger GW (1984) Hydrography and silica Budget of the Angola Basin. Neth J Sea Res 17(2–4):149–200CrossRefGoogle Scholar
  109. Van Bennekom AJ, Jager JE (1978) Dissolved aluminium in the Zaire River plume. Neth J Sea Res 12(3/4):358–367CrossRefGoogle Scholar
  110. Vangriesheim A, Pierre C, Aminot A, Metzl N, Baurand F, Caprais JC (2009) The influence of Congo river discharges in the surface and deep layers of the gulf of guinea. Deep Sea Res Part II Top Stud Oceanogr 56(23):2183–2196Google Scholar
  111. Vialard J, Delecluse P (1998a) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the Western Pacific Fresh Pool. J Phys Oceanogr 28:1071–1088CrossRefGoogle Scholar
  112. Vialard J, Delecluse P (1998b) An OGCM study for the TOGA decade. Part II: barrier layer formation and variability. J Phys Oceanogr 28:1089–1106CrossRefGoogle Scholar
  113. Vizy EK, Cook KH (2010) Influence of the Amazon/Orinoco Plume on the summertime Atlantic climate. J Geophys Res 115:D21112CrossRefGoogle Scholar
  114. Vörösmarty CJ, Fekete B, Tucker BA (1998) River discharge database, version 1.1 (RivDIS v1.0 supplement). Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NHGoogle Scholar
  115. Wang X, Han G, Qi Y, Li W (2011) Impact of barrier layer on typhoon-induced sea surface cooling. Dyn Atmos Oceans 52(3):367–385CrossRefGoogle Scholar
  116. Wauthy B (1977) Révision de la classification des eaux de surface du golfe de Guinée. Cah Orstom Sér Océanogr 15(3):279–295Google Scholar
  117. Wijesekera HW, Paulson CA, Huyer A (1999) The effect of rainfall on the surface layer during a westerly wind burst in the western equatorial Pacific. J Phys Oceanogr 29:612–632CrossRefGoogle Scholar
  118. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the global terrestrial network-hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24CrossRefGoogle Scholar
  119. Yamashita Y, Tanoue E (2004) In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett 31:L14302CrossRefGoogle Scholar
  120. Yin X, Boutin J, Martin N, Spurgeon P (2012) Optimization of L-Band Sea surface emissivity models deduced from SMOS data. IEEE Trans Geosci Remote Sens 50:1414–1426CrossRefGoogle Scholar
  121. Yoo JM, Carton JA (1988) Spatial dependence of the relationship between rainfall and outgoing longwave radiation in the tropical Atlantic. J Clim 1:1047–1056CrossRefGoogle Scholar
  122. Yu L (2010) On sea surface salinity skin effect induced by evaporation and implications for remote sensing of Ocean salinity. J Phys Oceanogr 40(1):85CrossRefGoogle Scholar
  123. Yu L (2011) A global relationship between the ocean water cycle and near-surface salinity. J Geophys Res 116:C10025CrossRefGoogle Scholar
  124. Yu L, McPhaden MJ (2011) Ocean pre-conditioning of Cyclone Nargis in the Bay of Bengal: interaction between Rossby waves, surface fresh waters, and sea surface temperatures. J Phys Oceanogr 41:1741–1755CrossRefGoogle Scholar
  125. Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes (OAFlux) for the global ocean. Bull Am Meteorol Soc 88(4):527–539CrossRefGoogle Scholar
  126. Yueh SH, West R, Wilson WJ, Li FK, Njoku EG, Rahmatsamii Y (2001) Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans Geosci Remote Sens 39:1049–1060CrossRefGoogle Scholar
  127. Zhang Y, Zhang X (2012) Ocean haline skin layer and turbulent surface convections. J Geophys Res 117:C04017Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nicolas Reul
    • 1
    • 2
    Email author
  • Severine Fournier
    • 1
  • Jaqueline Boutin
    • 3
  • Olga Hernandez
    • 3
  • Christophe Maes
    • 5
  • Bertrand Chapron
    • 1
  • Gaël Alory
    • 5
  • Yves Quilfen
    • 1
  • Joseph Tenerelli
    • 4
  • Simmon Morisset
    • 3
  • Yann Kerr
    • 6
  • Susanne Mecklenburg
    • 7
  • Steven Delwart
    • 7
  1. 1.Laboratoire d’Océanographie SpatialeInstitut Français de recherche et d’Exploitation de la MerPlouzanéFrance
  2. 2.Centre MéditerranéeZone Portuaire de BrégaillonLa Seyne-sur-Mer CedexFrance
  3. 3.Laboratoire d’Océanographie et du Climat: Expérimentation et Approches NumériquesUMR 7159 CNRS/UPMC/IRD/MNHNParisFrance
  4. 4.CLS-Radar DivisionBâtiment Le PonantPlouzanéFrance
  5. 5.LEGOS, OMP, CNAPUniversité de ToulouseToulouseFrance
  6. 6.CESBIOToulouseFrance
  7. 7.ESA-ESRINFrascattiItaly

Personalised recommendations