Advertisement

Surveys in Geophysics

, Volume 35, Issue 1, pp 101–122 | Cite as

Exploring for Geothermal Resources with Electromagnetic Methods

  • Gerard MuñozEmail author
Article

Abstract

Electrical conductivity of the subsurface is known to be a crucial parameter for the characterization of geothermal settings. Geothermal systems, composed by a system of faults and/or fractures filled with conducting geothermal fluids and altered rocks, are ideal targets for electromagnetic (EM) methods, which have become the industry standard for exploration of geothermal systems. This review paper presents an update of the state-of-the-art geothermal exploration using EM methods. Several examples of high-enthalpy geothermal systems as well as non-volcanic systems are presented showing the successful application of EM for geothermal exploration but at the same time highlighting the importance of the development of conceptual models in order to avoid falling into interpretation pitfalls. The integration of independent data is key in order to obtain a better understanding of the geothermal system as a whole, which is the ultimate goal of exploration.

Keywords

Geothermics Electromagnetics Electrical resistivity Exploration 

Notes

Acknowledgments

I would like to thank the Program Committee of the 21st Electromagnetic Induction Workshop for giving me the opportunity to write this review paper. My attendance to the workshop was financed by the project Brine (Grant Nr. 03G0758A/B) funded by the German Federal Ministry of Education and Research. I also thank all authors who sent me their papers, manuscripts and conference contributions, which helped me a lot in writing this review paper, and I apologise for any omissions. This paper has been improved by the comments of my colleague Ute Weckmann, Knútur Árnason and an anonymous reviewer.

Supplementary material

10712_2013_9236_MOESM1_ESM.jpg (665 kb)
Online Resource 1. Location map of exemplary surveys: 1) Taupo Volcanic Zone, New Zealand. 2) Hengill, Iceland. 3) Glass Mtn. geothermal area, USA. 4) Coso geothermal field, USA. 5) Larderello – Travale, Italy. 6) Menderes Massif, Turkey. 7) Pohang, South Korea. 8) Llucmajor aquifer, Spain. 9) Groß Schönebeck geothermal test site, Germany. 10) Puga, India. 11) Paralana EGS, Australia. (JPEG 665 kb)

References

  1. Abdul Azeez KK, Harinarayana T (2007) Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya. Curr Sci 93:323–329Google Scholar
  2. Abiye TA, Haile T (2008) Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift. Geothermics 37:586–596CrossRefGoogle Scholar
  3. Aizawa K, Kanda W, Ogawa Y, Iguchi M, Yokoo A, Yakiwara H, Sugano T (2011) Temporal changes in electrical resistivity at Sakurajima Volcano from continuous magnetotelluric observations. J Volcanol Geoth Res 199:165–175CrossRefGoogle Scholar
  4. Allis RG (1987) Geophysics and geochemical investigations of the Horohoro geothermal prospect. Report. 213, Geophysics Division, DSIR, Wellington, pp 78Google Scholar
  5. Anderson E, Crosby D, Ussher G (2000) Bulls-eye! Simple resistivity imaging to reliably locate the geothermal reservoir. In: proceedings world geothermal congress, Kyushu-Tohoku, Japan, pp 909–914Google Scholar
  6. Arango C, Marcuello A, Ledo J, Queralt P (2009) 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). J Appl Geophys 68:479–488CrossRefGoogle Scholar
  7. Árnason K, Flovenz ÓG (1998) Geothermal exploration by TEM-soundings in the Central Asal Rift in Djibouti, East Africa. In: proceedings world geothermal congress, Florence, Italy, pp 933–938Google Scholar
  8. Árnason K, Magnússon IÞ (2001) Geothermal Activity in Hengill and Hellisheiði. Results of Resistivity Surveys. Orkustofnun Report OS-2001/091, Reykjavik, Iceland, pp 250 (in Icelandic)Google Scholar
  9. Árnason K, Karlsdóttir R, Eysteinsson H, Flóvenz ÓG, Guðlaugsson STh (2000) The resistivity structure of high-temperature geothermal systems in Iceland. In: proceedings world geothermal congress, Tohoku-Kyushu, Japan, pp 923–928Google Scholar
  10. Árnason K, Eysteinsson H, Hersir GP (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39:13–34CrossRefGoogle Scholar
  11. Asaue H, Koike K, Yoshinaga T, Takakura S (2005) Magnetotelluric resistivity modeling for 3D characterization of geothermal reservoirs in the Western side of Mt. Aso, SW Japan. J Appl Geophys 58:296–312CrossRefGoogle Scholar
  12. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6:3–65CrossRefGoogle Scholar
  13. Bauer K, Moeck I, Norden B, Schulze A, Weber M, Wirth A (2010) Tomographic P-wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): relationship to lithology, salt tectonics, and thermal regime. Journal of geophysical Research 115, doi: 10.1029/2009JB006895
  14. Bedrosian PA, Weckmann U, Ritter O, Hammer CU, Hübert J, Jung A (2004) Electromagnetic monitoring of the Groß Schönebeck stimulation experiment. In: proceedings Jahrestagung der Deutschen Geophysikalischen Gessellschaft, p 64, GFZ, BerlinGoogle Scholar
  15. Benderitter Y, Cormy G (1990) Possible approach to geothermal research and relative costs. In: Dickson MH, Fanelli M (eds) Small geothermal resources: a guide to development and utilization. UNITAR, New York, pp 59–69Google Scholar
  16. Bertani R (2010) Geothermal power generation in the world. 2005–2010 Update Report. In: proceedings world geothermal congress, Bali, IndonesiaGoogle Scholar
  17. Bertrand EA, Caldwell TG, Hill GJ, Wallin EL, Bennie SL, Cozens N, Onacha SA, Ryan GA, Walter C, Zaino A, Wameyo P (2012) Magnetotelluric imaging of upper-crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 39:L02304. doi: 10.1029/2011GL050177 Google Scholar
  18. Bibby HM (1988) Electrical resistivity mapping in the Central Volcanic Region of New Zealand. NZ J Geol Geophys 31:259–274CrossRefGoogle Scholar
  19. Bibby HM, Caldwell TG, Davey FJ, Webb TH (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geoth Res 68:29–58CrossRefGoogle Scholar
  20. Bibby HM, Caldwell TG, Risk GF (2002) Long offset tensor resistivity surveys of the Taupo Volcanic Zone, New Zealand. J Appl Geophys 49:17–32CrossRefGoogle Scholar
  21. Bibby HM, Risk GF, Caldwell TG, Bennie SL (2005) Misinterpretation of electrical resistivity data in geothermal prospecting: a case study from the Taupo Volcanic Zone. In: proceedings world geothermal congress, Antalya, TurkeyGoogle Scholar
  22. Bibby HM, Risk GF, Caldwell TG, Heise W (2009) Investigations of deep resistivity structures at theWairakei geothermal field. Geothermics 38:98–107CrossRefGoogle Scholar
  23. Björnsson A, Hersir GP, Björnsson G (1986) The Hengill high-temperature area, S.W. Iceland: regional Geophysical Survey. Trans Geotherm Res Counc 10:205–210Google Scholar
  24. Brogi A, Lazzarotto A, Liotta D, Ranalli G (2003) Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363:127–139CrossRefGoogle Scholar
  25. Bojadgieva K, Hristov V, Srebrov B, Harinarayana T, Veeraswamy K (2006) Temperature investigation in Polyanovo hydrothermal reservoir (SE Bulgaria). Bulg Geophys J 32:3–11Google Scholar
  26. Burçak M, Kaya C, Riza Kılıç A, Akdogan N (2005) Exploration of the heat source and geothermal possibilities of the Aksaray Region, Central Anatolia, Turkey. In: proceedings world geothemal congress, Antalya, TurkeyGoogle Scholar
  27. Caldwell G, Pearson C, Zayadi H (1986) Resistivity of rocks in geothermal systems: a laboratory study. In: proceedings 8th NZ geothermal workshop, pp 227–231Google Scholar
  28. Casini M, Ciuffi M, Fiordelisi A, Mazzotti A, Stucchi E (2010) Results of a 3D seismic survey at the Travale (Italy) test site. Geothermics 39:4–12CrossRefGoogle Scholar
  29. Cumming W (2009) Geothermal resource conceptual models using surface exploration data. In: proceedings, 34th workshop on geothermal reservoir engineering, Stanford UniversityGoogle Scholar
  30. Cumming W, Mackie R (2007) 3D MT resistivity imaging for geothermal resource assessment and environmental mitigation at the glass mountain KGRA, California. GRC Transactions 31:331–334Google Scholar
  31. Cumming W, Mackie R (2010) Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a glass mountain case history. In: proceedings world geothemal congress, Bali, IndonesiaGoogle Scholar
  32. Daud Y, Sudarman S, Ushijima K (2001) Imaging reservoir permeability of the Sibayak geothermal field, Indonesia using geophysical measurements. In: proceedings, 26th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  33. Deer WA, Howie RA, Zussman J (1962) Rock-forming minerals, Vol 3 sheet silicates. Longmans, Green and Co Ltd, London, p 270Google Scholar
  34. Del Rosario R, Oanes AF (2010) Controlled source magnetotelluric survey of Mabini geothermal prospect, Mabini, Batangas, Philippines. In: proceedings world geothemal congress, Bali, IndonesiaGoogle Scholar
  35. Einarsson P (1978) S-wave shadows in the Krafla caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull Volcanol 41:187–195CrossRefGoogle Scholar
  36. Essene EJ, Peacor DR (1995) Clay mineral thermometry; a critical perspective. Clays Clay Miner 43:540–553CrossRefGoogle Scholar
  37. Fiordelisi A, Mackie RL, Madden T, Manzella A, Rieven SA (1995) Application of the magnetotelluric method using a remote—remote reference system for characterizing deep geothermal system. In: proceedings world geothemal congress, Florence, Italy, pp 893–897Google Scholar
  38. Fiordelisi A, Manzella A, Buonasorte G, Larsen JC, Mackie RL (2000) MT methodology in the detection of deep, water-dominated geothermal systems. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1121–1126Google Scholar
  39. Garg SK, Pritchett JW, Combs J (2006) Characterization of geothermal reservoir conditions using electrical surveys: some preliminary results. GRC Transactions 30:419–424Google Scholar
  40. Garg SK, Pritchett JW, Wannamaker PE, Combs J (2007) Characterization of geothermal reservoirs with electrical surveys: beowawe geothermal field. Geothermics 36:487–517CrossRefGoogle Scholar
  41. Gasperikova E, Newman G, Feucht D, Arnason K (2011) 3D MT characterization of two geothermal fields in Iceland. GRC Transactions 35:1667–1671Google Scholar
  42. Geiermann J, Schill E (2010) 2-D magnetotellurics at the geothermal site at Soultz-Sous-Forets- resistivity distribution to about 3000 M Depth. Comptes Rendus Geoscience. doi: 10.1016/j.crte.2010.04.001
  43. Harinarayana T, Abdul Azeez KK, Naganjaneyulu K, Manoj C, Veeraswamy K, Murthy DN, Prabhakar Eknath Rao S (2004) Magnetotelluric studies in Puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India. J Volcanol Geoth Res 138:405–424CrossRefGoogle Scholar
  44. Harinarayana T, Abdul Azeez KK, Murthy DN, Veeraswamy K, Eknath Rao SP, Manoj C, Naganjaneyulu K (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J Appl Geophys 58:280–295CrossRefGoogle Scholar
  45. Heise W, Bibby HM, Caldwell TG, Bannister SC, Ogawa Y, Takakura S, Uchida T (2007) Melt distribution beneath a young continental rift: the Taupo volcanic zone, New Zealand. Geophys Res Lett 34:L14313. doi: 10.1029/2007GL029629 CrossRefGoogle Scholar
  46. Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int 173:740–750. doi: 10.1111/j.1365-246X.2008.03737.x CrossRefGoogle Scholar
  47. Hersir GP (1980) Electric and electromagnetic measurements across the Mid-Atlantic Ridge in Southwest Iceland, with special reference to the high temperature area of Hengill. M. Sc. Thesis. University of Aarhus, Denmark, pp 165Google Scholar
  48. Huenges E, Moeck I, the geothermal group of the GFZ (2007) Directional drilling and stimulation of a deep sedimentary geothermal reservoir. Sci Drill 5:47–49Google Scholar
  49. Kurilovitch L, Norman D, Heizler M, Moore J, McCulloch J (2003) 40Ar/39Ar Thermal History of the Coso Geothermal Field. In: proceedings, 28th workshop on geothermal reservoir engineering, Stanford UniversityGoogle Scholar
  50. Kuyumcu ÖC, Destegül Solaroglu UZ, Hallinan S, Çolpan B, Turkoglu E, Soyer W (2011) Interpretation of 3D Magnetotelluric (MT) Surveys: basement conductors of the Menderes Massif, Western Turkey. GRC Transactions 35:861–866Google Scholar
  51. Lagios E, Galanopoulos D, Hobbs BA, Dawes GJK (1998) Two-dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece). Tectonophysics 287:157–172CrossRefGoogle Scholar
  52. Larsen J, Mackie R, Fiordelisi A, Manzella A, Rieven S (1995) Robust processing for removing train signals from Magnetotelluric Data in Central Italy. In: proceedings world geothemal congress, Florence, Italy, pp 903–908Google Scholar
  53. Lee TJ, Song Y, Uchida T (2007) Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea. Explor Geophys 38:44–49CrossRefGoogle Scholar
  54. Manzella A, Spichak V, Pushkarev P, Sileva D, Oskooi B, Ruggieri G, Sizov Y (2006) Deep fluid circulation in the travale geothermal area and its Relation with Tectonic Structure Investigated by a Magnetotelluric Survey. In: proceedings, 31st workshop on geothermal reservoir engineering, Stanford UniversityGoogle Scholar
  55. Manzella A, Ungarelli C, Ruggieri G, Giolito C, Fiordelisi A (2010) Electrical resistivity at the Travale geothermal field (Italy). In: proceedings world geothemal congress, Bali, IndonesiaGoogle Scholar
  56. Marini L, Manzella A (2005) Possible seismic signature of the α–β quartz transition in the lithosphere of Southern Tuscany (Italy). J Volcanol Geoth Res 148:81–97CrossRefGoogle Scholar
  57. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205CrossRefGoogle Scholar
  58. Monteiro Santos FA, Dupis A, Andrade Afonso AR, Mendes-Victor LA (1996) An audiomagnetotelluric survey over the Chaves geoth geothermal field (NE Portugal). Geothermics 25:389–406CrossRefGoogle Scholar
  59. Monteiro Santos FA, Andrade Afonso AR, Dupis A (2007) 2D joint inversion of DC and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields. J Geophys Eng 4:53–62CrossRefGoogle Scholar
  60. Mortensen AK (ed), Guðmundsson Á, Sigmundsson F, Axelsson G, Ármannsson H, Björnsson H, Ágústsson K, Sæmundsson K, Ólafsson M, Karlsdóttir R, Halldórsdóttir S, Hauksson T (2009) Krafla Geothermal System. A compilation of explorations and developments of the geothermal system and a reevaluation of the conceptual model. Landsvirkjun Report LV-2009/111 and ÍSOR, ÍSOR-2009/057, Reykjavik, Iceland, pp 180 (in Icelandic)Google Scholar
  61. Mortensen AK, Grönvold K, Guðmundsson A, Steingrímsson B, Egilson T (2010) Quenched silicic glass from well K-39 in Krafla, North-Eastern Iceland. In: proceedings world geothermal congress, Bali, IndonesiaGoogle Scholar
  62. Muffler P, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89CrossRefGoogle Scholar
  63. Mulyadi (2000) Magnetotelluric method applied for geothermal exploration in Sibayak, North Sumatra. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1469–1472Google Scholar
  64. Muñoz G, Ritter O, Moeck I (2010a) A target-oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir. Geophys J Int 183:1199–1215CrossRefGoogle Scholar
  65. Muñoz G, Bauer K, Moeck I, Schulze A, Ritter O (2010b) Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 39:35–45CrossRefGoogle Scholar
  66. Muraoka H, Uchida T, Sasada M, Yagi M, Akaku K, Sasaki M, Yasukawa K, Miyazaki S, Doi M, Saito S, Sato S, Tanakam S (1998) Deep geothermal resources survey program: igneous, metamorphic and hydrothermal processes in a well encountering 500 °C at 3729 m Depth, Kakkonda, Japan. Geothermics 27:507–534CrossRefGoogle Scholar
  67. Mwangi AW (2012) Eburru Geothermal Prospect, Kenya —Joint 1D Inversion of MT and TEM Data. In: proceedings, 37th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  68. Newman GA, Hoversten M, Gasperikova E, Wannamaker PE (2005) 3D magnetotelluric characterization of the Coso geothermal field. In: proceedings, 30th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  69. Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics 37:369–399CrossRefGoogle Scholar
  70. Nurmukhamedov AG, Chernev II, Alekseev DA, Yakovlev AG (2010) 3D geoelectric model of the Mutnov steam hydrothermal deposit. Phys Solid Earth 46:739–750CrossRefGoogle Scholar
  71. Ogawa Y, Bibby HM, Caldwell TG, Takakura S, Uchida T, Matsushima N, Bennie SL, Tosha T, Nishi Y (1999) Magnetotelluric image of the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 26:3673–3676CrossRefGoogle Scholar
  72. Ooskoi B, Manzella A (2011) 2D inversion of the Magnetotelluric data from Travale geothermal field in Italy. J Earth Space Phys 36:1–18Google Scholar
  73. Oskooi B, Pedersen LB, Smirnov M, Árnason K, Eysteinsson H, Manzella A, the DGP Working Group (2005) The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys Earth Planet Inter 150:183–195CrossRefGoogle Scholar
  74. Pastana de Lugao P, LaTerra EF, Kriegshäuser B, Fontes SL (2002) Magnetotelluric studies of the Caldas Novas geothermal reservoir, Brazil. J Appl Geophys 49:33–46CrossRefGoogle Scholar
  75. Peacock JR, Thiel S, Reid P, Heinson G (2012a) Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system. Geophysical Research Letters 39, doi: 10.1029/2012GL053080
  76. Peacock JR, Thiel S, Reid P, Messellier M, Heinson G (2012b) Monitoring enhanced geothermal fluids with magnetotellurics, test case: Paralana, South Australia. In: proceedings, 37th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  77. Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61:121–130CrossRefGoogle Scholar
  78. Raharjo IB, Maris V, Wannamaker PE, Chapman DS (2010) Resistivity Structures of Lahendong and Kamojang geothermal systems revealed from 3-D Magnetotelluric Inversions, a Comparative Study. In: proceedings world geothemal congress, Bali, IndonesiaGoogle Scholar
  79. Risk GF, Caldwell TG, Bibby HM (2003) Tensor time-domain electromagnetic resistivity measurements at Ngatamariki geothermal field, New Zealand. J Volcanol Geoth Res 127:33–54CrossRefGoogle Scholar
  80. Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005) Electrical conductivity images of active and fossil fault zones. In: Bruhn D and Burlini L (eds), High Strain Zones: Structure and Physical Properties, The Geological Society, pp 165–186Google Scholar
  81. Romo JM, Flores C, Vega R, Vázquez R, Pérez Flores MA, Gómez Treviño E, Esparza FJ, Quijano JE, García VH (1997) A closely-spaced magnetotelluric study of the Ahuachapán-Chipilapa geothermal field, El Salvador. Geothermics 26:627–656CrossRefGoogle Scholar
  82. Rybach L (2010) Status and prospects of geothermal energy. In: proceedings world geothermal congress, Bali, IndonesiaGoogle Scholar
  83. Shankar R, Padhi RN, Prakash G, Thussu JL, Wangdus C (1976) Recent geological studies in upper Indus valley and the plate tectonics. Geol Surv India, Misc Publ 34:41–56Google Scholar
  84. Spichak V (2005) Three-dimensional resistivity structure of the Minamikayabe geothermal zone revealed by Bayesian inversion of MT Data. In: proceedings world geothemal congress, Antalya, TurkeyGoogle Scholar
  85. Spichak V, Manzella A (2009) Electromagnetic sounding of geothermal zones. J Appl Geophys 68:459–478CrossRefGoogle Scholar
  86. Spichak V, Schwartz Y, Nurmukhamedov AG (2007) Conceptual Model of the Mutnovsky Geothermal Deposit (Kamchatka) Based on electromagnetic, gravity and magnetic data. In: Proceedings, EGM international workshopGoogle Scholar
  87. Spichak V, Geiermann J, Zakharova O, Calcagno P, Genter A, Schill E (2010) Deep temperature extrapolation in the Soultz-sous-Forêts geothermal area using magnetotelluric dataGoogle Scholar
  88. Stagpoole VM, Bibby HM (1998) The shallow resistivity structure of the Taupo Volcanic Zone, New Zealand. In: Proceedings of the 20th N.Z. geothermal workshop, University of Auckland Geothermal Institute, pp 303–310Google Scholar
  89. Tester JW and the MIT geothermal panel (2006) The future of geothermal energy—impact of enhanced geothermal systems (EGS) on the United States in the 21st Century, MIT—Massachusetts Institute of Technology, Cambridge, MA. p 358Google Scholar
  90. Tulinius H, Þorbergsdóttir IM, Ádám L, Hu ZZ, Yu G (2010) Geothermal evaluation in Hungary using integrated interpretation of well, seismic, and MT data. In: proceedings world geothemal congress, Bali, IndonesiaGoogle Scholar
  91. Uchida T (1995) Resistivity structure of Sumikawa geothermal field, northeastern Japan, obtained from magnetotelluric data. In: proceedings world geothemal congress, Florence, Italy, pp 921–925Google Scholar
  92. Uchida T (2005) Three-dimensional magnetotelluric investigation in geothermal fields in Japan and Indonesia. In: proceedings world geothemal congress, Antalya, TurkeyGoogle Scholar
  93. Uchida T, Ogawa Y, Takakura S, Mitsuhata Y (2000) Geoelectrical investigation of the kakkonda geothermal field, Northern Japan. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1893–1898Google Scholar
  94. Uchida T, Lee TJ, Honda M, Andan A (2002) 2-D and 3-D interpretation of magnetotelluric data in the Bajawa geothermal field, central Flores, Indonesia. Bull Geol Surv Japan 53:265–283Google Scholar
  95. Uchida T, Song T, Lee TJ, Mitsuhata Y, Lee SK, Lim SK (2004) 3D magnetotelluric interpretation in Pohang low-enthalpy geothermal area, Korea. In: proceedings 17th electromagnetic induction workshop, Hyderabad, IndiaGoogle Scholar
  96. Uchida T, Song Y, Lee TJ, Mitsuhata Y, Lee SK, Lim SK (2005) Magnetotelluric survey in an extremely noisy environment at the pohang low-enthalpy geothermal area, Korea. In: proceedings world geothermal congress, Antalya, TurkeyGoogle Scholar
  97. Uchida T, Takakura S, Ueda T, Adachi M, Ozeki M, Kamada K, Sato T (2010) 3D magnetotelluric survey at the Yanaizu-Nishiyama geothermal field, Northern Japan. In: Proceedings of the 9th Asian Geothermal Symposium, pp 26–31Google Scholar
  98. Ucok H, Ershaghi I, Olhoeft G (1980) Electrical resistivity of geothermal brines. J Petrol Technol 32:717–727Google Scholar
  99. Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding the resistivities observed in geothermal systems. In: proceedings world geothermal congress, Kyushu-Tohoku, Japan, pp 1915–1920Google Scholar
  100. Volpi G, Manzella A, Fiordelisi A (2003) Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy. Geothermics 32:131–145CrossRefGoogle Scholar
  101. Wannamaker PE (1997a) CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part I: implications for structure of the western caldera. Geophysics 62:451–465CrossRefGoogle Scholar
  102. Wannamaker PE (1997b) Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part II: implications for CSAMT methodology. Geophysics 62:466–476CrossRefGoogle Scholar
  103. Wannamaker PE, Rose PE, Doerner WM, Berard BC, McCulloch J, Nurse K (2004) Magnetotelluric surveying and monitoring at the Coso geothermal area, California, in support of the enhanced geothermal systems concept: survey parameters and initial results. In: proceedings, 29th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  104. Wannamaker PE, Doerner WM, Hasterok DP (2007) Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada; structural controls, hydrothermal alteration and deep fluid sources. In: proceedings, 32th workshop on geothermal reservoir Engineering, Stanford UniversityGoogle Scholar
  105. Wright PM, Ward SH, Ross HP, West RC (1985) State of the art geophysical exploration for geothermal resources. Geophysics 50:2666–2696CrossRefGoogle Scholar
  106. Yamane K, Ohsato K, Ohminato T, Kim HJ (2000) Three-dimensional magnetotelluric investigation in Kakkonda geothermal area, Japan. In: proceedings world geothemal congress, Tohoku-Kyushu, Japan, pp 1965–1968Google Scholar
  107. Yu G, Strack K, Tulinius H, Þorbergsóttir IM Ádám L, Hu ZZ, He ZX (2010) Integrated MT/Gravity geothermal exploration in Hungary: A success story. 21 ASEG Conference and Exhibition, SydneyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.German Research Centre for Geosciences GFZPotsdamGermany

Personalised recommendations