Surveys in Geophysics

, Volume 34, Issue 2, pp 141–163 | Cite as

Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space

  • I. Panet
  • J. Flury
  • R. Biancale
  • T. Gruber
  • J. Johannessen
  • M. R. van den Broeke
  • T. van Dam
  • P. Gegout
  • C. W. Hughes
  • G. Ramillien
  • I. Sasgen
  • L. Seoane
  • M. Thomas
Article

Abstract

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.

Keywords

Satellite gravity Earth system Mass transport Global water cycle Earth deformations 

References

  1. Bamber J, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. doi:10.1126/science.1169335 CrossRefGoogle Scholar
  2. Barletta VR, Bordoni A (2009) Clearing observed PGR in GRACE data aimed at global viscosity inversion: weighted mass trends technique. Geophys Res Lett 36:L02305. doi:10.1029/2008GL036429 CrossRefGoogle Scholar
  3. Barletta VR, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172:18–30. doi:10.1111/j.1365-246X.2007.03630.x CrossRefGoogle Scholar
  4. Beutler G, Rummel R, Drinkwater MR, von Steiger R (2003) Earth gravity field from space—from sensors to Earth sciences. Space Science series of ISSI 17. Kluwer, Dordrecht, ISBN: 1-4020-1408-2Google Scholar
  5. Bingham RJ, Hughes CW (2008a) The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model. Geophys Res Lett 35:L03602. doi:10.1029/2007GL032662 CrossRefGoogle Scholar
  6. Bingham RJ, Hughes CW (2008b) Determining North Atlantic meridional transport variability from pressure on the western boundary: a model investigation. J Geophys Res 114:C09008CrossRefGoogle Scholar
  7. Bingham RJ, Hughes CW (2009) Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi:10.1029/2008GL036215 CrossRefGoogle Scholar
  8. Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the earth system. Earth Planet Sci Lett 298:263–274. doi:10.1016/j.epsl.2010.07.035 CrossRefGoogle Scholar
  9. Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  10. Cazenave A et al (2009) Sea level budget over 2003–2008: a re-evaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65(1–2):83–88CrossRefGoogle Scholar
  11. Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34:L05610CrossRefGoogle Scholar
  12. Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871 CrossRefGoogle Scholar
  13. Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci. doi:10.1038/NGEO694 Google Scholar
  14. de Viron O, Panet I, Mikhailov V, van Camp M, Diament M (2008) Retrieving earthquake signature in GRACE gravity solutions. Geophys J Int 174(1):14–20. doi:10.1111/j.1365-246X.2008.03807.x CrossRefGoogle Scholar
  15. Dickey J et al (1997) Satellite gravity and the geosphere. National Academy Press, Washington, DCGoogle Scholar
  16. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442 CrossRefGoogle Scholar
  17. Flury J, Rummel R (2005) Future satellite gravimetry and earth dynamics. Springer, Dordrecht. ISBN 0-387-29796-0Google Scholar
  18. Frappart F, G Ramillien (2012) Contribution of GRACE satellite gravimetry in global and regional hydrology and in ice sheets mass balance. In: Nayak P (ed) Water resources management and modeling, chap 9Google Scholar
  19. Garzoli S, Boebel O, Bryden H, Fine R, Fukusawa M, Gladyshev S, Johnson G, Johnson M, MacDonald A, Meinen C, Mercier H, Orsi A, Piola A, Rintoul S, Speich S, Visbeck M, Wanninkhof R (2010) Progressing towards global sustained deep ocean observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs ‘09: sustained ocean observations and information for society, Venice, Italy, 21–25 September 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.34
  20. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29:375–397. doi:10.1007/s10712-008-9038-y CrossRefGoogle Scholar
  21. Hager BH (1991) Mantle viscosity—a comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In: Sabadini R, Lambeck K, Boschi E (eds) Glacial isostasy, sea level and mantle rheology. Kluwer, Dordrecht, pp 493–513CrossRefGoogle Scholar
  22. Han SC, Shum CK, Bevis M, Ji C, Kuo C-Y (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313:658CrossRefGoogle Scholar
  23. Hughes CW, de Cuevas BA (2001) Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J Phys Oceanogr 31:2871–2885. doi:10.1175/1520-0485 CrossRefGoogle Scholar
  24. Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  25. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep. 327, Department of Geod Sci and Surv, Ohio State University, ColumbusGoogle Scholar
  26. Johannessen J, e.motion Science Team (2010) Earth system mass transport mission, proposal for earth explorer opportunity mission EE8. In response to the call for proposals for earth explorer opportunity mission EE8 (ESA/EXPLORER/COM-3/EE-8 Oct 2009)Google Scholar
  27. Koop R, Rummel R (2008) The future of satellite gravimetry. In: Report from the workshop on the future of satellite gravimetry, 1–13 April 2007. ESTEC, Noordwijk, The Netherlands; Institute of Advanced Study, TU MünichGoogle Scholar
  28. Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the earth system. J Geodyn. doi:10.1016/j.jog.2012.03.003 Google Scholar
  29. Lemke P et al (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  30. Lettenmaier D, Famiglietti J (2006) Water from on high. Nature 444:562–563CrossRefGoogle Scholar
  31. Loomis BD, Nerem RS, Luthcke SB (2011) Simulation study of a follow-on gravity mission to GRACE. J Geodesy. doi:10.1007/s00190-011-0521-8 Google Scholar
  32. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT et al (2007) Glaciers dominate Eustatic sea-level rise in the 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  33. Mikhailov V, Tikhotsky S, Diament M, Panet I, Ballu V (2004) Can tectonic processes be recovered from new satellite gravity data? Earth Planet Sci Lett 228:281–297CrossRefGoogle Scholar
  34. Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478CrossRefGoogle Scholar
  35. Mitrovica JX, Forte AM (1997) Radial profile of mantle viscosity: results from the joint inversion of convection and post-glacial rebound observables. J Geophys Res 102(B2):2751–2770CrossRefGoogle Scholar
  36. Oki T, Sud Y (1998) Design of total runoff integrating pathways (TRIP)—a global river channel network. Earth Interact 2(1):1–36CrossRefGoogle Scholar
  37. Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85:819–843. doi:10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  38. Panet I, Pollitz F, Mikhailov V, Diament M, Banerjee P, Grijalva K (2010) Upper mantle rheology from GRACE and GPS post-seismic deformation after the 2004 Sumatra-Andaman earthquake. Geochem Geophys Geosyst 11(6):Q06008. doi:10.1029/2009GC002905 CrossRefGoogle Scholar
  39. Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171:497–508CrossRefGoogle Scholar
  40. Plag H-P, Pealrman M (2009) Global geodetic observing system, meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. ISBN 978-3-642-02686-7CrossRefGoogle Scholar
  41. Pollitz F, Wicks C, Thatcher W (2001) Mantle flow beneath a continental strike-slip fault: post-seismic deformation after the 1999 Hector Mine earthquake. Science 293:1814–1818CrossRefGoogle Scholar
  42. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968 CrossRefGoogle Scholar
  43. Ramillien G, Famiglietti J, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys. doi:10.1007/s10712-008-9048-9 Google Scholar
  44. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311(5763):986–990. doi:10.1126/science.1121381 CrossRefGoogle Scholar
  45. Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506. doi:10.1126/science.1073888 CrossRefGoogle Scholar
  46. Rignot E, Bamber JL, Van Den Broeke MR, Davis C, Li Y, Van De Berg WJ, Van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(2):106–110CrossRefGoogle Scholar
  47. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35:2705–2724. doi:10.1029/1999WR900141 CrossRefGoogle Scholar
  48. Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238 CrossRefGoogle Scholar
  49. Roussenov V, Williams RG, Hughes CW, Bingham R (2008) Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. J Geophys Res 114:C08042. doi:10.1029/2007JC004501 CrossRefGoogle Scholar
  50. Rummel R (2005) Geoid and gravity in earth sciences—an overview. Earth Moon Planet 94(1–2):3–11. doi:10.1007/s11038-005-3755-8 Google Scholar
  51. Rummel R (2011) GOCE gravitational gradiometry. J Geodesy 85:777–790. doi:10.1007/s00190-011-0500-0 CrossRefGoogle Scholar
  52. Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet Sci Lett 299(3–4):352–358CrossRefGoogle Scholar
  53. Sasgen I, Klemann V, Martinec Z (2012) Toward the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland. J Geodyn. doi:10.1016/j.jog.2012.03.004 Google Scholar
  54. Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H et al (2006) GRACE observations of changes in continental water storage. Glob Planet Change 50:112–126CrossRefGoogle Scholar
  55. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi:10.1007/s107/12-008-9033-3 CrossRefGoogle Scholar
  56. Send U, Burkill P, Gruber N, Johnson GC, Körtzinger A, Koslow T, O’Dor R, Rintoul S, Roemmich D, Wijffels S (2010) Towards an integrated global observing system: in-situ observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs ‘09: sustained ocean observations and information for society, Venice, Italy, 21–25 September 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.pp.35
  57. Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geodesy 78:442–456. doi:10.1007/s00190-004-0410-5 CrossRefGoogle Scholar
  58. Sheard B, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geodesy. doi:10.1007/s00190-012-0566-3 Google Scholar
  59. Sneuuw N, Flury J, Rummel R (2005) Science requirements on future missions and simulated mission scenarios. Earth Moon Planet 94:113–142CrossRefGoogle Scholar
  60. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from GRACE measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi:10.1029/2001JB000576 CrossRefGoogle Scholar
  61. GCOS (Global Climate Observing System) (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS report 82. WMO/TD-no. 1143Google Scholar
  62. GCOS (Global Climate Observing System) (2006) Systematic observation requirements for satellite-based products for climate. GCOS report 107, WMO/TD-no. 1338Google Scholar
  63. Tamisiea ME (2011) Ongoing glacial isostatic contributions to observations of sea level change. Geophys J Int 186:1036–1044. doi:10.1111/j.1365-246X.2011.05116.x CrossRefGoogle Scholar
  64. Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi:10.1029/2005GL023961 CrossRefGoogle Scholar
  65. Tamisiea ME, Mitrovica JX, Davis JL (2007) GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316:881. doi:10.1126/science.1137157 CrossRefGoogle Scholar
  66. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  67. Van den Broeke MR, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986CrossRefGoogle Scholar
  68. Van der Wal W, Wu P, Sideris MG, Shum CK (2008) Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America. J Geodyn 46(3–5):144–154Google Scholar
  69. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222 CrossRefGoogle Scholar
  70. Vermeersen BLA (2005) Challenges from solid earth dynamics for satellite gravity field missions in the post-GOCE era. Earth Moon Planet 94:31–40. doi:10.1007/s11038-004-6816-5 CrossRefGoogle Scholar
  71. Visser PNAM, Sneuuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181:789–805. doi:10.1111/j.1365-246X.2010.04557.x Google Scholar
  72. Wahr J, Davis JL (2002) Geodetic constraints on glacial isostatic adjustment. In: Mitrovica JX, Vermeersen LLA (eds) Ice sheets, sea level and the dynamic earth, geodynamic series, vol 29. AGU, Washington, DC, pp 2–32Google Scholar
  73. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844 CrossRefGoogle Scholar
  74. Wiese D, Nerem R, Lemoine F (2012) Design configurations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86(2):81–98. doi:10.1007/s00190-011-0493-8 CrossRefGoogle Scholar
  75. Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816 CrossRefGoogle Scholar
  76. Wu P, Peltier WR (1983) Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity. Geophys J R Astron Soc 74:377–450Google Scholar
  77. Zlotnicki V, Wahr J, Fukumori I, Song Y-T (2007) Antarctic circumpolar current transport variability during 2003–2005 from GRACE. J Phys Oceanogr 37(2):230–244CrossRefGoogle Scholar
  78. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222. doi:10.1126/science.1072708 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • I. Panet
    • 1
    • 2
  • J. Flury
    • 3
  • R. Biancale
    • 4
  • T. Gruber
    • 5
  • J. Johannessen
    • 6
  • M. R. van den Broeke
    • 7
  • T. van Dam
    • 8
  • P. Gegout
    • 12
  • C. W. Hughes
    • 9
  • G. Ramillien
    • 12
  • I. Sasgen
    • 10
  • L. Seoane
    • 11
    • 12
  • M. Thomas
    • 10
  1. 1.Laboratoire LAREG, Institut National de l’Information Géographique et Forestière, GRGS Université Paris DiderotParis Cedex 13France
  2. 2.Institut de Physique du Globe de Paris (IPGP, Sorbonne Paris Cité, UMR 7154 CNRS, Université Paris Diderot)ParisFrance
  3. 3.Centre for Quantum Engineering and Space-Time ResearchLeibnitz Universität HannoverHannoverGermany
  4. 4.CNES/GRGS, Géoscience Environnement Toulouse, UMR 5563 CNRS, Observatoire Midi-PyrénéesToulouseFrance
  5. 5.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  6. 6.Nansen Environmental and Remote Sensing CenterBergenNorway
  7. 7.Institute for Marine and Atmospheric ResearchUtrecht UniversityUtrechtThe Netherlands
  8. 8.Faculté des Sciences, de la Technologie et de la CommunicationUniversité du LuxembourgLuxembourgLuxembourg
  9. 9.National Oceanography CentreLiverpoolUK
  10. 10.German Research Centre for Geosciences (GFZ)PotsdamGermany
  11. 11.Université Paul Sabatier, GET, UMR 5563 CNRS, GRGS, Observatoire Midi-PyrénéesToulouseFrance
  12. 12.Géoscience Environnement Toulouse, UMR 5563 CNRSToulouseFrance

Personalised recommendations