Surveys in Geophysics

, Volume 34, Issue 1, pp 1–41

Energetic Charged Particles Above Thunderclouds

  • Martin Füllekrug
  • Declan Diver
  • Jean-Louis Pinçon
  • Alan D. R. Phelps
  • Anne Bourdon
  • Christiane Helling
  • Elisabeth Blanc
  • Farideh Honary
  • R. Giles Harrison
  • Jean-André Sauvaud
  • Jean-Baptiste Renard
  • Mark Lester
  • Michael Rycroft
  • Mike Kosch
  • Richard B. Horne
  • Serge Soula
  • Stéphane Gaffet
Article

Abstract

The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth’s atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C.T.R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth’s atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth’s atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized.

Keywords

Relativistic Atmospheric Electrodynamics 

References

  1. Abel B, Thorne R (1998) Electron scattering loss in Earth’s inner magnetosphere 1. Dominant physical processes. J Geophys Res 103:2385–2396. doi:10.1029/97JA02919 CrossRefGoogle Scholar
  2. Allen J, Phelps A (1977) Waves and microinstabilities in plasmas—linear effects. Rep Prog Phys 40:1305–1368. doi:10.1088/0034-4885/40/11/002 CrossRefGoogle Scholar
  3. Babich L, Donskoy E, Kutsyk I, Roussel-Dupré R (2004) Characteristics of a relativistic electron avalanche in air. Doklady Phys 49:35–38. doi:10.1134/1.1648089 CrossRefGoogle Scholar
  4. Baker D, Kanekal S, Horne R, Meredith N, Glauert SA (2007) Low-altitude measurements of 26 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5. Geophys Res Lett 34:1–5. doi:10.1029/2007GL031007 Google Scholar
  5. Barrington-Leigh C, Inan U, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106:1741–1750. doi:10.1029/2000JA000073 CrossRefGoogle Scholar
  6. Becker K, Schoenbach K, Eden J (2006) Microplasmas and applications. J Phys D: Appl Phys 39:R55–R70. doi:10.1088/0022-3727/39/3/R01 CrossRefGoogle Scholar
  7. Blanc E, Farges T, Roche R, Brebion D, Hua T, Labarthe A, Melnikov V (2004) Nadir observations of sprites from the International Space Station. J Geophys Res 109:1–8. doi:10.1029/2003JA009972 CrossRefGoogle Scholar
  8. Blanc E, Farges T, Brebion D, Labarthe A, Melnikov V (2006) Observations of sprites at the nadir; the LSO (lightning and sprite observations) experiment on board of the International Space Station. In: Füllekrug M, Mareev E, Rycroft M (eds) Sprites elves, intense lightning discharges, vol NATO Science Series II, 225. Springer, DordrechtGoogle Scholar
  9. Blanc E, Lefeuvre F, Roussel-Dupré R, Sauvaud J (2007) TARANIS: a microsatellite project dedicated to the study of impulsive transfers of energy between the earth atmosphere, the ionosphere, and the magnetosphere. Adv Space Res 40:1268–1275. doi:10.1016/j.asr.2007.06.037 CrossRefGoogle Scholar
  10. Boccippio D, Williams E, Heckman S, Lyons W, Baker I, Boldi R (1995) Sprites, ELF transients, and positive ground strokes. Science 269:1088–1091. doi:10.1126/science.269.5227.1088 CrossRefGoogle Scholar
  11. Boeck W, Vaughan O, Blakeslee R, Vonnegut B, Brook M (1992) Lightning induced brightening in the airglow layer. Geophys Res Lett 19:99–102. doi:10.1029/91GL03168 CrossRefGoogle Scholar
  12. Bonaventura Z, Bourdon A, Celestin S, Pasko V (2011) Electric field determination in streamer discharges in air at atmospheric pressure. Plasma Sources Sci Technol 20:1–11. doi:10.1088/0963-0252/20/3/035012
  13. Briggs M, Connaughton V, Wilson-Hodge C, Preece R, Fishman G, Kippen R, Bhat P, Paciesas W, Chaplin V, Meegan C, von Kienlin A, Greiner J, Dwyer J, Smith D (2011) Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys Res Lett 38:1–5. doi:10.1029/2010GL046259 CrossRefGoogle Scholar
  14. Bryers C, Kosch M, Senior A, Rietveld M, Yeoman T (2012) EISCAT observations of pump-enhanced plasma temperature and optical emission excitation rate as a function of power flux. J Geophys Res 117:1–12. doi:10.1029/2012JA017897 CrossRefGoogle Scholar
  15. Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C method. Geophys Res Lett 22:1021–1024. doi:10.1029/95GL00468 CrossRefGoogle Scholar
  16. Carlson B, Lehtinen N, Inan U (2009) Observations of terrestrial gamma-ray flash electrons. In: Crosby N, Huang T, Rycroft M (eds) Coupling of thunderstorms and lightning discharges to near-Earth space. American Institute of Physics, Melville, pp 84–91Google Scholar
  17. Carlson B, Gjesteland T, Østgaard N (2011) Terrestrial gamma ray flash electron beam geometry, fluence, and detection frequency. J Geophys Res 116:1–7. doi:10.1029/2011JA016812 CrossRefGoogle Scholar
  18. Celestin S, Pasko V (2010) Effects of spatial non-uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events. Geophys Res Lett 37:1–15. doi:10.1029/2010JA016260 CrossRefGoogle Scholar
  19. Celestin S, Pasko V (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:1–14. doi:10.1029/2010JA016260 CrossRefGoogle Scholar
  20. Celestin S, Pasko V (2012) Compton scattering effects on the duration of terrestrial gamma ray flashes. J Geophys Res 39:1–9. doi:10.1029/2011GL050342 Google Scholar
  21. Chanrion O, Neubert T (2010) Production of runaway electrons by negative streamer discharges. J Geophys Res 115:1–10. doi:10.1029/2009JA014774 Google Scholar
  22. Chisham G, Lester M, Milan S, Freeman M, Bristow W, Grocott A, MacWilliams K, Ruohoniemi J, Yeoman T, Dyson P, Greenwald R, Kikuchi T, Pinnock M, Rash J, Sato N, Sofko G, Villain J, Walker A (2007) A decade of the super dual auroral radar network (SuperDARN): scientific achievements, new techniques and future directions. Surv Geophys 28:33–109. doi:10.1007/s10712-007-9017-8 CrossRefGoogle Scholar
  23. Cohen M, Inan U, Said R, Briggs M, Fishman G, Connaughton V, Cummer S (2010) A lightning discharge producing a beam of relativistic electrons into space. Geophys Res Lett 37:1–4. doi:10.1029/2010GL044481 Google Scholar
  24. Cummer S, Inan U (2000) Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Sci 35:385–394. doi:10.1029/1999RS002184 CrossRefGoogle Scholar
  25. Cummer S, Lu G, Briggs M, Connaughton V, Xiong S, Fishman G, Dwyer J (2011) Geophys Res Lett 38:1–6. doi:10.1029/2011GL048099 CrossRefGoogle Scholar
  26. De Larquier S, Pasko V (2010) Mechanism of inverted-chirp infrasonic radiation from sprites. Geophys Res Lett 37:1–5. doi:10.1029/2010GL045304 Google Scholar
  27. Delprat N, Escudié B, Guillemain P, Kronland-Martinet R, Tchamitchian P, Torrésani B (1992) Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans Inform Theory 38:644–664. doi:10.1109/18.119728 CrossRefGoogle Scholar
  28. Desch S, Cuzzi J (2000) The generation of lightning in the solar nebula. Icarus 143:87–105. doi:10.1006/icar.1999.6245 CrossRefGoogle Scholar
  29. Dowds B, Barrett R, Diver D (2003) Streamer initiation in atmospheric pressure gas discharges by direct particle simulation. Phys Rev E 68:1–9. doi:10.1103/PhysRevE.68.026412 Google Scholar
  30. Dwyer J (2003) A fundamental limit on electric fields in air. Geophys Res Lett 30:2055–2058. doi:10.1029/2003GL017781 CrossRefGoogle Scholar
  31. Dwyer J (2010) Diffusion of relativistic runaway electrons and implications for lightning initiation. J Geophys Res 115:1–11. doi:10.1029/2009JA014504 Google Scholar
  32. Dwyer J (2012) The relativistic feedback discharge model of terrestrial gamma ray flashes. J Geophys Res 117:1–25. doi:10.1029/2011JA017160 Google Scholar
  33. Dwyer J, Grefenstette B, Smith D (2008) High-energy electron beams launched into space by thunderstorms. Geophys Res Lett 35:1–5. doi:10.1029/2007GL032430 CrossRefGoogle Scholar
  34. Dwyer J, Uman M, Rassoul H (2009) Remote measurements of thundercloud electrostatic fields. J Geophys Res 114:1–19. doi:10.1029/2008JD011386 CrossRefGoogle Scholar
  35. Dwyer J, Smith D, Cummer S (2012) High-energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 167:1–64. doi:10.1007/s11214-012-9894-0 CrossRefGoogle Scholar
  36. Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and their relevance for sprites and lightning. J Geophys Res 115:1–13. doi:10.1029/2009JA014867 Google Scholar
  37. Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res 115:1–17. doi:10.1029/2009JA014700 Google Scholar
  38. Farges T, Blanc E, Pichon AL, Neubert T, Allin T (2005) Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys Res Lett 32:1–4. doi:10.1029/2004GL021212 CrossRefGoogle Scholar
  39. Farrell W, Desch M (1992) Cloud-to-stratosphere lightning discharges: a radio emission model. Geophys Res Lett 19:665–668. doi:10.1029/91GL02955 CrossRefGoogle Scholar
  40. Fishman G, Bhat P, Mallozzi R, Horack J, Koshut T, Kouveliotou C, Pendleton G, Meegan C, Wilson R, Paciesas W, Goodman S, Christian H (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264:1313–1316. doi:10.1126/science.264.5163.1313 CrossRefGoogle Scholar
  41. Franz R, Nemzek R, Winckler J (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51. doi:10.1126/science.249.4964.48 CrossRefGoogle Scholar
  42. Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D: Appl Phys 38:1–24. doi:10.1088/0022-3727/38/2/R01 CrossRefGoogle Scholar
  43. Fukunishi H, Takahashi Y, Kubota M, Sakanoi K, Inan U, Lyons W (1996) Elves: lightning-induced transient luminous events in the lower ionosphere. Geophys Res Lett 23:2157–2160. doi:10.1029/96GL01979 CrossRefGoogle Scholar
  44. Füllekrug M, Rycroft M (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58:1193–1196Google Scholar
  45. Füllekrug M, Mareev E, Rycroft M (eds) (2006) Sprites, elves and intense lightning discharges. Springer, DordrechtGoogle Scholar
  46. Füllekrug M, Roussel-Dupré R, Symbalisty M, Chanrion O, Odzimek A, van der Velde O, Neubert T (2010) Relativistic runaway breakdown in low frequency radio. J Geophys Res 115:1–10. doi:10.1029/2009JA014468 CrossRefGoogle Scholar
  47. Füllekrug M, Hanuise C, Parrot M (2011a) Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. Atmos Chem Phys 11:1–7. doi:10.5194/acp-11-1-2011 Google Scholar
  48. Füllekrug M, Roussel-Dupré R, Symbalisty E, Colman J, Chanrion O, Soula S, van der Velde O, Odzimek A, Bennett A, Pasko V, Neubert T (2011b) Relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics 11:7747–7754. doi:10.5194/acp-11-7747-2011 CrossRefGoogle Scholar
  49. Gauld J, Yeoman T, Davies J, Milan S, Honary F (2002) SuperDARN radar HF propagation and absorption response to the substorm expansion phase. Annales Geophysicae 20:1631–1645. doi:10.5194/angeo-20-1631-2002 CrossRefGoogle Scholar
  50. Gemelos E, Inan U, Walt M, Parrot M, Sauvaud J (2009) Seasonal dependence of energetic electron precipitation: evidence for a global role of lightning. Geophys Res Lett 36:1–5. doi:10.1029/2009GL040396 CrossRefGoogle Scholar
  51. Gillespie K, Speirs D, Ronald K, McConville L, Phelps A, Bingham R, Cross A, Robertson C, Whyte C, He W, Vorgul I, Cairns R, Kellett B (2008) 3D PiC code simulations for a laboratory experimental investigation of auroral kilometric radiation mechanisms. Plasma Phys Cont Fusion 50:1–12. doi:10.1088/0741-3335/50/12/124038 Google Scholar
  52. Ginzburg N, Sergeev A, Zotova I, Novozhilova Y, Peskov N, Konoplev I, Phelps A, Cross A, Cooke S, Aitken P, Shpak V, Yalandin M, Shunailov C, Ulmaskulov M (1997) Experimental observation of superradiance in millimeter-wave band. Nuclear instruments and methods in physics research section A—accelerators, spectrometers, detectors and associated equipment 393:352–355. doi:10.1016/S0168-9002(97)00509-3 CrossRefGoogle Scholar
  53. Ginzburg N, Peskov N, Sergeev A, Konoplev I, Cross A, Phelps A, Robb G, Ronald K, He W, Whyte C (2002a) Theory of free-electron maser with two-dimensional distributed feedback driven by an annular electron beam. J Appl Phys 92:1619–1629. doi:10.1063/1.1481193 CrossRefGoogle Scholar
  54. Ginzburg N, Peskov N, Sergeev A, Phelps A, Cross A, Konoplev I (2002b) The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser. Phys Plasmas 9:2798–2802. doi:10.1063/1.1476664 CrossRefGoogle Scholar
  55. Gurevich A, Zybin K (2005) Runaway breakdown and the mysteries of lightning. Phys Today 58:37–43. doi:10.1063/1.1995746 CrossRefGoogle Scholar
  56. Gurevich A, Milikh G, Roussel-Dupré R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463–468. doi:10.1016/0375-9601(92)90348-P CrossRefGoogle Scholar
  57. Gurevich A, Duncan L, Karashtin A, Zybin K (2003) Radio emission of lightning initiation. Phys Lett A 312:228–237. doi:10.1016/S0375-9601(03)00511-5 CrossRefGoogle Scholar
  58. Gustavsson B, Sergienko T, Kosch M, Rietveld M, Brändström B, Leyser T, Isham B, Gallop P, Aso T, Ejiri M, Grydeland T, LaHoz C, Kaila K, Jussila J, Holma H (2005) The electron energy distribution during HF pumping, a picture painted with all colors. Ann Geophys 23:1747–1754. doi:10.5194/angeo-23-1747-2005 CrossRefGoogle Scholar
  59. Harrison R, Nicoll K, Ulanowski Z, Mather T (2010) Self-charging of the Eyjafjallajökull volcanic ash plume. Environ Res Lett 5:1–4. doi:10.1088/1748-9326/5/2/024004 Google Scholar
  60. Helling C, Woitke P (2006) Dust in brown dwarfs—V. Growth and evaporation of dirty dust grains. Astron Astrophys 455:325–H4. doi:10.1051/0004-6361:20054598 CrossRefGoogle Scholar
  61. Helling C, Dehn M, Woitke P, Hauschildt P (2008a) Consistent simulations of substellar atmospheres and nonequilibrium dust cloud formation. Astrophys J Lett 675:105–108. doi:10.1086/533462 CrossRefGoogle Scholar
  62. Helling C, Woitke P, Thi W (2008b) Dust in brown dwarfs and extra-solar planets—I. Chemical composition and spectral appearance of quasi-static cloud layers. Astron Astrophys 485:547–560. doi:10.1051/0004-6361:20078220 CrossRefGoogle Scholar
  63. Helling C, Jardine M, Mokler F (2011a) Ionization in atmospheres of brown dwarfs and extrasolar planets. II: Dust-induced collisional ionization. Astrophys J 737:1–11. doi:10.1088/0004-637X/737/1/38 Google Scholar
  64. Helling C, Jardine M, Witte S, Diver D (2011b) Ionization in atmospheres of brown dwarfs and extrasolar planets. I. The role of electron avalanche. Astrophys J 727:1–6. doi:10.1088/0004-637X/727/1/4 Google Scholar
  65. Helliwell R (1965) Whistlers and related ionospheric phenomena. Stanford University Press, CaliforniaGoogle Scholar
  66. Hess W (1963) The artificial radiation belt made on July 9, 1962. J Geophys Res 68:667–683. doi:10.1029/JZ068i003p00667 CrossRefGoogle Scholar
  67. Hibbens R, Freeman M, Milan S, Ruohoniemi J (2011) Winds and tides in the mid-latitude Southern hemisphere upper atmosphere recorded with the Falkland Islands SuperDARN radar. Ann Geophys 29:1985–1996. doi:10.5194/angeo-29-1985-2011 CrossRefGoogle Scholar
  68. Honary F, Robinson T, Wright D, Stocker A, Rietveld M, McCrea I (1999) First direct observations of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann Geophys 17:1235–1238. doi:10.1007/s005850050848 Google Scholar
  69. Honary F, Marple S, Barratt K, Chapman P, Grill M, Nielsen E (2011) Digital beam-forming imaging riometer systems. Rev Sci Instrum 82:1–15. doi:10.1063/1.3567309 CrossRefGoogle Scholar
  70. Hosokawa K, Ogawa T, Arnold N, Lester M, Sato N, Yukimatu A (2005) Extraction of polar mesosphere summer echoes from SuperDARN data. Geophys Res Lett 32:1–4. doi:10.1029/2005GL022788 CrossRefGoogle Scholar
  71. Ignaccolo M, Farges T, Mika A, Allin T, Chanrion O, Blanc E, Neubert T, Fraser-Smith A, Füllekrug M (2006) The planetary rate of sprite events. Geophys Res Lett 33:1–4CrossRefGoogle Scholar
  72. Inan U, Bell T, Bortnik J, Albert J (2003) Controlled precipitation of radiation belt electrons. J Geophys Res 108:1186. doi:10.1029/2002JA009580 CrossRefGoogle Scholar
  73. Inan U, Piddyachiy D, Peter W, Sauvaud J, Parrot M (2007) DEMETER satellite observations of lightning-induced electron precipitation. Geophys Res Lett 34:1–5. doi:10.1029/2006GL029238 Google Scholar
  74. Jarvis M, Hibbins R, Taylor M, Rosenberg T (2003) Utilizing riometry to observe gravity waves in the sunlit mesosphere. Geophys Res Lett 30:1–4. doi:10.1029/2003GL017885 CrossRefGoogle Scholar
  75. Kavanagh A, Kosch M, Honary F, Senior A, Marple S, Woodfield E, McCrea I (2004) The statistical dependence of auroral absorption on geomagnetic and solar wind parameters. Ann Geophys 22:877–887. doi:10.5194/angeo-22-877-2004 CrossRefGoogle Scholar
  76. Kosch M, Rietveld M, Hagfors T, Leyser T (2000) High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys Res Lett 27:2817–2820. doi:10.1029/2000GL003754 CrossRefGoogle Scholar
  77. Kosch M, Honary F, del Pozo C, Marple S, Hagfors T (2001) High-resolution mapping of the characteristic energy of precipitating auroral particles. J Geophys Res 106:28925–28937. doi:10.1029/2001JA900107 CrossRefGoogle Scholar
  78. Kosch M, Rietveld M, Kavanagh A, Davis C, Yeoman T, Honary F, Hagfors T (2002) High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys Res Lett 29:2112–2115. doi:10.1029/2002GL015744 CrossRefGoogle Scholar
  79. Kosch M, Pedersen T, Rietveld M, Gustavsson B, Grach S, Hagfors T (2007a) Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv Space Res 40:365–376. doi:10.1016/j.asr.2007.02.061 CrossRefGoogle Scholar
  80. Kosch M, Pedersen T, Mishin E, Oyama S, Hughes J, Senior A, Watkins B, Bristow B (2007b) Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J Geophys Res 112:1–13. doi:10.1029/2006JA012146 Google Scholar
  81. Kosch M, Ogawa Y, Rietveld M, Nozawa S, Fujii R (2010) An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J Geophys Res 115:1–9. doi:10.1029/2010JA015854 Google Scholar
  82. Kosch M, Yiu I, Anderson C, Tsuda T, Ogawa Y, Nozawa S, Aruliah A, Howells V, Baddeley L, McCrea I, Wild J (2011) Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region. J Geophys Res 116:1–16. doi:10.1029/2010JA016015 Google Scholar
  83. Krehbiel P, Riousset J, Pasko V, Thomas R, Rison W, Stanley M, Edens H (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1:233–237. doi:10.1038/ngeo162 CrossRefGoogle Scholar
  84. Le Bihan N, Sangwine S (2003) Quaternion principal component analysis of color images. IEEE Int Conf Image Proc 1:809–812Google Scholar
  85. Lefeuvre F, Blanc E, Pinçon J, Roussel-Dupré R, Lawrence D, Sauvaud J, Rauch J, Feraudy H, Lagoutte D (2008) TARANIS—a satellite project dedicated to the physics of TLEs and TGFs. Space Sci Rev 137:301–315. doi:10.1007/s11214-008-9414-4 CrossRefGoogle Scholar
  86. Lefeuvre F, Marshall R, Pinçon J, Inan U, Lagoutte D, Parrot M, Berthelier J (2009) On remote sensing of transient luminous events’ parent lightning discharges by ELF/VLF wave measurements on board a satellite. J Geophys Res 114:1–13. doi:10.1029/2009JA014154 CrossRefGoogle Scholar
  87. Lehtinen N, Bell T, Inan U (1999) Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. J Geophys Res 104:24699–24712. doi:10.1029/1999JA900335 CrossRefGoogle Scholar
  88. Lester M (2008) SuperDARN: a network approach to geospace science in the 21st century. J Atmos Solar Terr Phys 70:2309–2323. doi:10.1016/j.jastp.2008.08.003 CrossRefGoogle Scholar
  89. Li C, Ebert U, Hundsdorfer W (2012) Spatially hybrid computations for streamer discharges: II. Fully 3D simulations. J Comput Phys 231:1020–1050. doi:10.1016/j.jcp.2011.07.023 CrossRefGoogle Scholar
  90. Liszka L (2004) On the possible infrasound generation by sprites. J Low Freq Noise Vib Act Control 23:85–93. doi:10.1260/0263092042869838 CrossRefGoogle Scholar
  91. Liszka L, Hobara Y (2006) Sprite-attributed infrasonic chirps—their detection, occurrence and properties between 1994 and 2004. J Atmos Solar Terr Phys 68:1179–1188. doi:10.1016/j.jastp.2006.02.016 CrossRefGoogle Scholar
  92. Liu N, Pasko V (2004) Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J Geophys Res 109. doi:10.1029/2003JA010064
  93. Lu G, Cummer S, Li J, Han F, Smith D, Grefenstette B (2011) Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes. J Geophys Res 116:1–12. doi:10.1029/2010JA016141 Google Scholar
  94. Lyons L, Thorne R, Kennel C (1972) Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res 77:3455. doi:10.1029/JA077i019p03455 CrossRefGoogle Scholar
  95. MacGorman D, Rust W (1998) The electrical nature of storms. Oxford University Press, New YorkGoogle Scholar
  96. MacLachlan C, Diver D, Potts H (2009) The evolution of electron overdensities in magnetic fields. New J Phys 11:1–20. doi:10.1088/1367-2630/11/6/063001 Google Scholar
  97. Mallat S (2009) A wavelet tour of signal processing. The sparse way. Third edition. With contributions from Gabriel Peyré. Elsevier, Academic Press, AmsterdamGoogle Scholar
  98. Marshall R (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res 117:1–15. doi:10.1029/2011JA017408 Google Scholar
  99. Marshall T, McCarthy M, Rust W (1995) Electric field magnitudes and lightning initiation in thunderstorms. J Geophys Res 100:7097–7103. doi:10.1029/95JD00020 CrossRefGoogle Scholar
  100. Massines F, Rabehi A, Decomps P, Ben Gadri R, Ségur P, Mayoux C (1998) Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83:2950–2957. doi:10.1063/1.367051 CrossRefGoogle Scholar
  101. Mather T, Harrison R (2006) Electrification of volcanic plumes. Surv Geophys 27:387–432. doi:10.1007/s10712-006-9007-2 CrossRefGoogle Scholar
  102. McConville S, Speirs D, Ronald K, Phelps A, Cross A, Bingham R, Robertson C, Whyte C, He W, Gillespie K, Vorgul I, Cairns R, Kellett B (2008) Demonstration of auroral radio emission mechanisms by laboratory experiment. Plasma Phys Cont Fusion 50:1–13. doi:10.1088/0741-3335/50/7/074010 Google Scholar
  103. Mende S, Chang Y, Chen A, Frey H, Fukunishi H, Geller S, Harris S, Heetderks H, Hsu R, Lee L, Su H, Takahashi Y (2006) Spacecraft based studies of transient luminous events. In: Füllekrug M, Mareev E, Rycroft M (eds) Sprites, elves and intense lightning discharges, vol NATO Science Series II, 225. Springer, DordrechtGoogle Scholar
  104. Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J (2009) Relativistic electron loss timescales in the slot region. J Geophys Res 114:1–16. doi:10.1029/2008JA013889 Google Scholar
  105. Milan S, Davies J, Lester M (1999) Coherent HF radar backscatter characteristics associated with auroral forms identified by incoherent radar techniques. J Geophys Res 104:22591–22603. doi:10.1029/1999JA900277 CrossRefGoogle Scholar
  106. Miron S, Le Bihan N, Mars J (2006) Quaternion-MUSIC for vector-sensor array processing. IEEE Trans Signal Process 54:1218–1229. doi:10.1109/TSP.2006.870630 CrossRefGoogle Scholar
  107. Moss G, Pasko V, Liu N, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:1–37. doi:10.1029/2005JA011350 CrossRefGoogle Scholar
  108. Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C, Turunen E, Bösinger T, Mika A, Haldoupis C, Steiner R, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Füllekrug M, Verronen P, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. doi:10.1007/s10712-008-9043-1 CrossRefGoogle Scholar
  109. Nguyen C, van Deursen A, van Heesch E, Winands G, Pemen JM (2010) X-ray emission in streamer-corona plasma. J Phys D: Appl Phys 43:1–5. doi:10.1088/0022-3727/43/2/025202 Google Scholar
  110. Nicoll K, Harrison R, Ulanowski Z (2011) Observations of Saharan dust layer electrification. Environ Res Lett 6:1–7. doi:10.1088/1748-9326/6/1/014001 Google Scholar
  111. Nijdam S, van der Wetering F, Blanc R, van Veldhuizen E, Ebert U (2010) Probing photo-ionization: experiments on positive streamers in pure gases and mixtures. J Phys D: Appl Phys 43:1–16. doi:10.1088/0022-3727/43/14/145204 Google Scholar
  112. Odzimek A, Kubicki M, Lester M, Grocott A (2011) Relation between the SuperDARN ionospheric potential and ground electric field at polar station Hornsund. In: Proceedings of the 14th international conference on atmospheric electricity (ICAE), vol 115, pp 1–22. doi:10.1029/2009JD013341
  113. Ogawa T, Arnold N, Kirkwood S, Nishitani N, Lester M (2003) Finland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann Geophys 21:1047–1055. doi:10.5194/angeo-21-1047-2003 CrossRefGoogle Scholar
  114. Østgaard N, Gjesteland T, Hanson R, Collier A, Carlson B (2012) The true fluence distribution of terrestrial gamma ray flashes at satellite altitudes. J Geophys Res 117:1–8. doi:10.1029/2011JA017365 CrossRefGoogle Scholar
  115. Pai D, Lacoste D, Laux C (2010) Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J Phys D: Appl Phys 107:1–15. doi:10.1063/1.3309758 Google Scholar
  116. Parrot M, Inan U, Lehtinen N, Pincon J (2009) Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters. J Geophys Res 114:1–12. doi:10.1029/2009JA014598 Google Scholar
  117. Pasko V (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Science and Technology 16:13–29. doi:10.1088/0963-0252/16/1/S02 CrossRefGoogle Scholar
  118. Pasko V (2010) Recent advances in theory of transient luminous events. J Geophys Res 115:1–24. doi:10.1029/2009JA014860 CrossRefGoogle Scholar
  119. Pasko V, Snively J (2007) Mechanism of infrasound radiation from sprites. EOS Transactions of AGU, Fall Meeting Abstract AE23A0899, 88Google Scholar
  120. Pasko V, Stanley M, Mathews J, Inan U, Wood T (2002) Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416:152–154. doi:10.1038/416152a CrossRefGoogle Scholar
  121. Rakov V, Uman M (2003) Lightning, physics and effects. Cambridge University Press, CambridgeGoogle Scholar
  122. Randall C, Siskind D, Bevilacqua RM (2001) Stratospheric NOx enhancements in the southern hemisphere vortex in winter/spring of 2000. Geophys Res Lett 28:2385–2388. doi:10.1029/2000GL012746 CrossRefGoogle Scholar
  123. Reising S, Inan U, Bell T, Lyons W (1996) Evidence for continuing currents in sprite-producing lightning flashes. Geophys Res Lett 23:3639–3642. doi:10.1029/96GL03480 CrossRefGoogle Scholar
  124. Renard J, Brogniez C, Berthet G, Bourgeois Q, Gaubicher B, Chartier M, Balois J, Verwaerde C, Auriol F, Francois P, Daugeron D, Engrand C (2008) Vertical distribution of the different types of aerosols in the stratosphere. J Geophys Res 113:1–17. doi:10.1029/2008JD010150 Google Scholar
  125. Renard J, Berthet G, Salazar V, Catoire V, Tagger M, Gaubicher B, Claude R (2010) In situ detection of aerosol layers in the middle stratosphere. Geophys Res Lett 37:1–5. doi:10.1029/2010GL044307 Google Scholar
  126. Riousset J, Pasko V, Bourdon A (2010) Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events. J Geophys Res 115:1–22. doi:10.1029/2010JA015918 CrossRefGoogle Scholar
  127. Rishbeth H, van Eyken A (1993) EISCAT: early history and the first ten years of operation. J Atmos Terr Phys 55:525–542. doi:10.1016/0021-9169(93)90002-G CrossRefGoogle Scholar
  128. Robinson T, Honary F, Stocker A, Jones T, Stubbe P (1996) First EISCAT observations of the modification of F-region electron temperature during heating at harmonics of the electron gyrofrequency. J Atmos Terr Phys 58:385–395. doi:10.1016/0021-9169(95)00043-7 CrossRefGoogle Scholar
  129. Roble R (1991) On modeling component processes in the Earth’s global electric circuit. J Atmos Terr Phys 53:831–847. doi:10.1016/0021-9169(91)90097-Q CrossRefGoogle Scholar
  130. Ronald K, Speirs D, McConville S, Gillespie K, Phelps A, Bingham R, Vorgul I, Cairns R, Cross A, Robertson C, Whyte C, He W, Kellett B (2011) Auroral magnetospheric cyclotron emission processes: numerical and experimental simulations. Plasma Phys Cont Fusion 53:1–11. doi:10.1088/0741-3335/53/7/074015 Google Scholar
  131. Roussel-Dupré R, Gurevich A (1996) On runaway breakdown and upward propagating discharges. J Geophys Res 101:2297–2311. doi:10.1029/95JA03278 CrossRefGoogle Scholar
  132. Roussel-Dupré R, Symbalisty E, Taranenko Y, Yukhimuk V (1998) Simulations of high-altitude discharges initiated by runaway breakdown. J Atmos Solar Terr Phys 60:917–940. doi:10.1016/S1364-6826(98)00028-5 CrossRefGoogle Scholar
  133. Ruohoniemi J, Baker K (1998) Large-scale imaging of high-latitude convection with super dual auroral radar network HF radar observations. J Geophys Res 103:20797–20811. doi:10.1029/98JA01288 CrossRefGoogle Scholar
  134. Rycroft M, Harrison R (2011) Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit. Space Sci Rev (published online):1–22. doi:10.1007/s11214-011-9830-8
  135. Rycroft M, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:1–18. doi:10.1029/2009JA014758 CrossRefGoogle Scholar
  136. Rycroft M, Odzimek A, Arnold N, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites. J Atmos Solar Terr Phys 69:2485–2509 doi:10.1016/j.jastp.2007.09.004 CrossRefGoogle Scholar
  137. Rycroft M, Harrison R, Nicoll K, Mareev E (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev 137:83–105. doi:10.1007/s11214-008-9368-6 CrossRefGoogle Scholar
  138. Rycroft M, Nicoll K, Aplin K, Harrison R (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Solar Terr Phys (published online):1–14. doi:10.1016/j.jastp.2012.03.015
  139. Saunders C, Rimmer J (1999) The electric field alignment of ice crystals in thunderstorms. Atmos Res 51:337–343. doi:10.1016/S0169-8095(99)00018-6 CrossRefGoogle Scholar
  140. Sauvaud J, Moreau T, Maggiolo R, Treilhou J, Jacquey C, Cros A, Coutelier J, Rouzaud J, Penou E, Gangloff M (2006) High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet Space Sci 54:502–511. doi:10.1016/j.pss.2005.10.019 CrossRefGoogle Scholar
  141. Sauvaud J, Maggiolo R, Jacquey C, Parrot M, Berthelier J, Gamble R, Rodger C (2008) Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys Res Lett 35:1–5. doi:10.1029/2008GL033194 CrossRefGoogle Scholar
  142. Sauvaud J, Walt M, Delcourt D, Benoist C, Penou E, Chen Y, Russell C (2012) Inner radiation belt particle acceleration and energy structuring by drift resonance with ULF waves during storms. Submitted to J Geophys ResGoogle Scholar
  143. Schisselé E, Guilbert J, Gaffet S, Cansi Y (2004) Accurate time-frequency-wave number analysis to study coda waves. Geophys J Int 158:577–591. doi:10.1111/j.1365-246X.2004.02211.x CrossRefGoogle Scholar
  144. Schisselé E, Gaffet S, Cansi Y (2005) Characterization of regional and local scattering effects from small-aperture seismic array recordings. J Seismol 9:137–149. doi:10.1007/s10950-005-8234-1 CrossRefGoogle Scholar
  145. Sentman D, Wescott E (1993) Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys Res Lett 20:2857–2860. doi:10.1029/93GL02998 CrossRefGoogle Scholar
  146. Sentman D, Wescott E, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys Res Lett 22:1205–1208. doi:10.1029/95GL00583 CrossRefGoogle Scholar
  147. Sentman D, Wescott E, Picard R, Winick J, Stenbaek-Nielsen H, Dewan E, Moudry D, Sabbas FS, Heavner M, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J Atmos Solar Terr Phys 65:537–500. doi:10.1016/S1364-6826(02)00328-0 CrossRefGoogle Scholar
  148. Seppälä A, Verronen P, Clilverd M, Randall CE, Tamminen J, Sofieva V, Backman L, Kyrola E (2007) Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys Res Lett 34:1–5. doi:10.1029/2007GL029733 Google Scholar
  149. Seppälä A, Randall C, Clilverd M, Rozanov E, Harvey V, Rodger C (2009) Geomagnetic activity and polar surface air temperature variability. J Geophys Res 114:1–10. doi:10.1029/2008JA014029 Google Scholar
  150. Shao X, Hamlin T, Smith D (2010) A closer examination of terrestrial gamma-ray flash-related lightning processes. J Geophys Res 115:1–8. doi:10.1029/2009JA014835 CrossRefGoogle Scholar
  151. Siingh D, Singh A, Patel R, Singh R, Singh R, Veenadhari B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys 29:499–551. doi:10.1007/s10712-008-9053-z CrossRefGoogle Scholar
  152. Siingh D, Singh R, Singh A, Kumar S, Kulkarni M, Singh K (2012) Discharges in the stratosphere and mesosphere. Space Sci Rev 169:1–49. doi:10.1007/s11214-012-9906-0 CrossRefGoogle Scholar
  153. Slevin P, Harrison W (1975) Hollow-cathode discharge as a spectrochemical emission source. Appl Spectrosc Rev 10:201–255. doi:10.1080/05704927508085065 CrossRefGoogle Scholar
  154. Smith D, Lopez L, Lin R, Barrington-Leigh C (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. doi:10.1126/science.1107466 CrossRefGoogle Scholar
  155. Soula S, Van der Velde O, Montanyà J, Neubert T, Chanrion O, Ganot M (2009) Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: two case studies. Atmos Res 91:514–528. doi:10.1016/j.atmosres.2008.06.017 CrossRefGoogle Scholar
  156. Soula S, Van der Velde O, Palmieri J, Chanrion O, Neubert T, Montanya J, Gangneron F, Meyerfeld Y, Lefeuvre F, Lointier G (2010) Characteristics and conditions of production of transient luminous events observed over a maritime storm. J Geophys Res 115:1–14. doi:10.1029/2009JD012066 Google Scholar
  157. Soula S, Van der Velde O, Montanya J, Huet P, Barthe C, Bor J (2011) Gigantic jets produced by an isolated tropical thunderstorm near Réunion island. J Geophys Res 116:1–14. doi:10.1029/2010JD015581 Google Scholar
  158. Speirs D, McConville S, Gillespie K, Ronald K, Phelps A, Cross A, Bingham R, Robertson C, Whyte C, Vorgul I, Cairns R, Kellett B (2008) Numerical simulation of auroral cyclotron maser processes. Plasma Phys Cont Fusion 50:1–15. doi:10.1088/0741-3335/50/7/074011 Google Scholar
  159. Stanley M, Shao X, Smith D, Lopez L, Pongratz M, Harlin J, Stock M, Regan A (2006) A link between terrestrial gamma-ray flashes and intracloud lightning discharges. Geophys Res Lett 33: 1–4. doi:10.1029/2005GL025537 CrossRefGoogle Scholar
  160. Stark C, Diver D, da Costa D, Laing E (2007) Nonlinear mode coupling in pair plasmas. Astron Astrophys 476:17–30. doi:10.1051/0004-6361:20077988 CrossRefGoogle Scholar
  161. Starks M, Quinn R, Ginet G, Albert J, Sales G, Reinisch B, Song P (2008) Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation. J Geophys Res 113:1–16. doi:10.1029/2008JA013112 CrossRefGoogle Scholar
  162. Starks M, Bell T, Quinn R, Inan U, Piddyachiy D, Parrot M (2009) Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER. Geophys Res Lett 36:1–6. doi:10.1029/2009GL038511 CrossRefGoogle Scholar
  163. Stubbe P (1996) Review of ionospheric modification experiments at Tromso. J Atmos Terr Phys 58:349–368. doi:10.1016/0021-9169(95)00041-0 CrossRefGoogle Scholar
  164. Su H, Su R, Chen A, Wang Y, Hsiao W, Lai W, Lee L, Sato M, Fukunishi H (2003) Gigantic jets between a thundercloud and the ionosphere. Nature 423:974–976. doi:10.1038/nature01759 CrossRefGoogle Scholar
  165. Tavani M, Marisaldi M, Labanti C et al. (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106:1–5. doi:10.1103/PhysRevLett.106.018501 CrossRefGoogle Scholar
  166. Thorne R, Horne R (1994) Landau damping of magnetospherically reflected whistlers. J Geophys Res 99:17249–17258. doi:10.1029/94JA01006 Google Scholar
  167. Thorne R, O’Brien T, Shprits Y, Summers D, Horne R (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res 110:1–7. doi:10.1029/2004JA010882 Google Scholar
  168. Townsend J (1901) The conductivity produced in gases by the motion of negatively charged ions. Philos Mag Series 6:198–227. doi:10.1080/14786440109462605 CrossRefGoogle Scholar
  169. Trakhtengerts V, Rycroft M (2008) Whistler and Alfvén mode cyclotron masers in space, Cambridge atmospheric and space science series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  170. Tripathi S, Vishnoi S, Kumar S, Harrison R (2006) Computationally efficient expressions for the collision efficiency between electrically charged aerosol particles and cloud droplets. Quart J R Meteorol Soc 132:1717–1731. doi:10.1256/qj.05.125 CrossRefGoogle Scholar
  171. Ulanowski Z, Bailey J, Lucas P, Hough J, Hirst E (2007) Alignment of atmospheric mineral dust due to electric field. Atmos Chem Phys 7:6161–6173. doi:10.5194/acp-7-6161-2007 CrossRefGoogle Scholar
  172. Van der Velde O, Mika A, Soula S, Haldoupis C, Neubert T, Inan U (2006) Observations of the relationship between sprite morphology and in-cloud lightning processes. J Geophys Res 111:1–8. doi:10.1029/2005JD006879 Google Scholar
  173. Van der Velde O, Montanyá J, Soula S, Pineda N, Bech J (2010) Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain. J Geophys Res 115:1–17. doi:10.1029/2009JA014773 Google Scholar
  174. Van Veldhuizen E (2000) Electrical discharges for environmental purposes: fundamentals and applications. Nova Science, New YorkGoogle Scholar
  175. Vernier J, Pommereau J, Garnier A, Pelon J, Larsen N, Nielsen J, Christensen T, Cairo F, Thomason L, Leblanc T, McDermid I (2009) Tropical stratospheric aerosol layer from CALIPSO lidar observations. J Geophys Res 114:1–12. doi:10.1029/2009JD011946 Google Scholar
  176. Wait J, Spies K (1964) Characteristics of the Earth-ionosphere wave guide for VLF radio waves, Technical Note 300, National Bureau of Standards, Boulder, Colorado, pp 1–96Google Scholar
  177. Walt M (1964) Effects of atmospheric collisions on geomagnetically trapped electrons. J Geophys Res 69:3947–3958. doi:10.1029/JZ069i019p03947 CrossRefGoogle Scholar
  178. Wescott E, Sentman D, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys Res Lett 22:1209–1212. doi:10.1029/95GL00582 CrossRefGoogle Scholar
  179. Wilson C (1916) On some determinations of the sign and magnitude of electric discharges in lightning flashes. Proc R Soc Lond 92:555–574. doi:10.1098/rspa.1916.0040 CrossRefGoogle Scholar
  180. Wilson C (1921) Investigations on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Lond A 221:73–115. doi:10.1098/rsta.1921.0003 CrossRefGoogle Scholar
  181. Wilson C (1924) The electric field of a thundercloud and some of its effects. Proc Phys Soc Lond 37:32D–37D. doi:10.1088/1478-7814/37/1/314 CrossRefGoogle Scholar
  182. Wilson C (1929) Some thundercloud problems. J Franklin Inst 208:1–12. doi:10.1016/S0016-0032(29)90935-2 CrossRefGoogle Scholar
  183. Witte S, Helling C, Hauschildt PH (2009) Dust in brown dwarfs and extra-solar planets II. Cloud formation for cosmologically evolving abundances. Astron Astrophys 506:1367–1380. doi:10.1051/0004-6361/200811501 CrossRefGoogle Scholar
  184. Woitke P, Helling C (2003) Dust in brown dwarfs - II. The coupled problem of dust formation and sedimentation. Astron Astrophys 399:297–313. doi:10.1051/0004-6361:20021734 CrossRefGoogle Scholar
  185. Xu W, Celestin S, Pasko V (2012) Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders. J Geophys Res 39:1–5. doi:10.1029/2012GL051351 Google Scholar
  186. Yair Y, Israelevich P, Devir A, Price C, Joseph J, Levin Z, Ziv B, Sternlieb A, Teller A (2004) New observations of sprites from the space shuttle. J Geophys Res 109:1–10. doi:10.1029/2003JD004497 CrossRefGoogle Scholar
  187. Yalandin M, Shpak V, Shunailov S, Oulmaskoulov M, Ginzburg N, Zotova I, Novozhilova Y, Sergeev A, Phelps A, Cross A, Wiggins S, Ronald K (2000) Generation of powerful subnanosecond microwave pulses in the range of 38-150 GHz. IEEE Trans Plasma Sci 28:1615–1619. doi:10.1109/27.901243 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Martin Füllekrug
    • 1
  • Declan Diver
    • 2
  • Jean-Louis Pinçon
    • 3
  • Alan D. R. Phelps
    • 4
  • Anne Bourdon
    • 5
  • Christiane Helling
    • 6
  • Elisabeth Blanc
    • 7
  • Farideh Honary
    • 8
  • R. Giles Harrison
    • 9
  • Jean-André Sauvaud
    • 10
  • Jean-Baptiste Renard
    • 3
  • Mark Lester
    • 11
  • Michael Rycroft
    • 12
  • Mike Kosch
    • 8
    • 13
  • Richard B. Horne
    • 14
  • Serge Soula
    • 15
  • Stéphane Gaffet
    • 16
  1. 1.Department of Electronic and Electrical EngineeringUniversity of BathBathUK
  2. 2.School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  3. 3.Laboratoire de Physique et Chimie de l’Environnement et de l’EspaceOrléans Cedex 2France
  4. 4.Department of PhysicsUniversity of StrathclydeGlasgowUK
  5. 5.Laboratoire d’Energétique Moléculaire et Macroscopique, CombustionCNRS, UPR 288Châtenay-MalabryFrance
  6. 6.School of Physics and Astronomy North HaughUniversity of St AndrewsSt AndrewsUK
  7. 7.Commissariat à l’Energie AtomiqueLaboratoire de GéophysiqueBruyères le ChâtelFrance
  8. 8.Physics DepartmentLancaster UniversityLancasterUK
  9. 9.Department of MeteorologyUniversity of ReadingReadingUK
  10. 10.Centre d’Etude Spatiale des Rayonnements/IRAPToulouse Cedex 4France
  11. 11.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  12. 12.CAESAR ConsultancyCambridgeUK
  13. 13.School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  14. 14.British Antarctic SurveyCambridgeUK
  15. 15.Laboratoire d’AérologieUniversité de Toulouse, CNRSToulouseFrance
  16. 16.Laboratoire Souterrain à Bas Bruit (LSBB)UMS 3538 University of Nice, University of Avignon, CNRSRustrelFrance

Personalised recommendations