Surveys in Geophysics

, Volume 33, Issue 5, pp 1059–1079 | Cite as

Flux-Gate Magnetometers Design Peculiarities

  • Valery KorepanovEmail author
  • Andriy Marusenkov


The most widespread instrument used today for the measurement of quasi-stationary and slowly fluctuating vector magnetic fields is a flux-gate magnetometer (FGM). The most important parameter characterizing the magnetometer quality is its magnetic noise—its threshold sensitivity or its own noise level (NL). Based on the results of experimental research, we may state that the FGM NL mainly depends on the quality of the magnetic material used for FGM sensor core. The “solid liquid” model explaining the nature of magnetic noise is proposed and substantiated. It is demonstrated that special attention has to be paid to the annealing of the core. A new effect—termed gamma-magnetic normalization—is discovered and discussed. It is shown that the magnetometer NL depends not only on the core length and volume but also on the excitation mode of the core. Besides, the ways to improve other factors, such as power consumption and thermal drift which must be taken into account in order to create a FGM with the highest possible performance, are discussed. Some examples are given of the parameters of present advanced FGMs for geophysical uses.


Flux-gate magnetometer Noise level Power consumed Excitation mode 



The authors sincerely thank Dr Hakan Svedhem, ESTEC, for assistance in the experimental verification of the gamma-magnetic normalization effect and to the referees and the editor who helped to improve the quality of the paper very much. This work was partially supported by STCU Grant 5567.


  1. Acuna MM (2002) Space based magnetometers. Rev Sci Instr 73(11):3717–3736CrossRefGoogle Scholar
  2. Amalou F, Gijs MAM (2001) Giant magnetoimpedance of chemically thinned and polished magnetic amorphous ribbons. J Appl Phys 90:3466–3470Google Scholar
  3. Appino C, Beatrice C, Ferrara E, Fiorillo F (2004) Magnetization process and magnetic losses in field-annealed amorphous and nanocrystalline ribbons. J Optoelectron Adv Mater 6(2):511–521Google Scholar
  4. Aschenbrenner H, Goubau G (1936) Eine Anordnung zur Registrierung rascher magnetischer Stoerungen. Hochfrequenrtecnik und Elektroakustik XLV11(6):177–181Google Scholar
  5. Auster HU, Lichopoj A, Rustenbach J, Bitterlich H, Fornacon KH, Hillenmaier O, Krause R, Schenk HJ, Auster V (1995) Concept and first results of a digital fluxgate magnetometer. Meas Sci Technol 6:477–481CrossRefGoogle Scholar
  6. Bartington Instruments. Accessed 19 April 2011
  7. Berkman R (1999) Theoretic and experimental investigation of flux-gate magnetometer noise. In: Proceedings of IMEKO-XV World Congress. Osaka, Japan, pp 149–156Google Scholar
  8. Berkman RY, Afanasenko MP (1976) The magnetic modulators own noise decreasing at the core operation near Curie temperature. Inf Extr Process 48:83–87 (in Russian)Google Scholar
  9. Berkman RY, Bondaruk BL, Fedotov VM (1972) Ferroresonance excitation mode of the magnetic modulators and flux-gates. Geophys Instr 50:20–28 (in Russian)Google Scholar
  10. Bertotti G (1988) General properties of power losses in soft ferromagnetic material. IEEE Trans Magn 24(1):621–630CrossRefGoogle Scholar
  11. Bertotti G (1998) Hysteresis in magnetism. Academic Press, San Diego, CAGoogle Scholar
  12. Bertotti G, Fiorillo F, Sassi MP (1981) Barkhausen noise and domain structure dynamics in Si-Fe at different points of the magnetization curve. J Magn Magn Mater 23:136–148CrossRefGoogle Scholar
  13. Billingsley Aerospace & Defense (2008) Accessed 15 April 2011
  14. Bittel H (1969) Noise of ferromagnetic materials. Trans Magn MAG-5 (3): 359–364Google Scholar
  15. Bohn F, Gündel A, Landgraf FJG, Severino AM, Sommer RL (2007) Magnetostriction, Barkhausen noise and magnetization processes in E110 grade non-oriented electrical steels. J Magn Magn Mater 317:20–28CrossRefGoogle Scholar
  16. Delevoye E, Audoin M, Beranger M, Cuchet R, Hida R, Jager T (2008) Microfluxgate sensors for high frequency and low power applications. Sens Actuators A 145–146:271–277Google Scholar
  17. Ferrara E, Infortuna A, Magni A, Pasquale M (1997) Structural and magnetic analysis of amorphous Fe64Co21B15 ribbons. IEEE Trans Magn 33(5):3781–3783CrossRefGoogle Scholar
  18. Flohrer S, Schafer R, McCord J, Roth S, Schultz L, Fiorillo F, Gu¨nther W, Herzer G (2006) Dynamic magnetisation process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta Mater 54:4693–4698CrossRefGoogle Scholar
  19. Forslund A, Belyayev S, Ivchenko N, Olsson G, Edberg T, Marusenkov A (2008) Miniaturized digital fluxgate magnetometer for small spacecraft applications. Meas Sci Technol 19:015202–015211CrossRefGoogle Scholar
  20. Ioan C, Tibu M, Chiriac H (2004) Magnetic noise measurement for Vacquier type fluxgate sensor with double excitation. J Optoelectron Adv Mater 6(2):705–708Google Scholar
  21. Koch RH, Rozen JR (2001) Low-noise flux-gate magnetic-field sensors using ring- and rod-core geometries. Appl Phys Lett 73(13):1897–1899CrossRefGoogle Scholar
  22. Koch RH, Deak JG, Grinstein G (1999) Fundamental limits to magnetic field sensitivity of flux-gate magnetic-field sensors. Appl Phys Lett 75(24):3862–3864CrossRefGoogle Scholar
  23. Kominis IK, Kornack NW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Lett Nat 422:596–599CrossRefGoogle Scholar
  24. Korepanov V, Berkman R (1999) Comparison of magnetometers efficiency for ELF band. In: Proceedings of the 2nd international conference of measurement, Smolenice, Slovac Republic, pp 195–198Google Scholar
  25. Korepanov V, Berkman R, Bondaruk B (1997) Advanced flux-gate magnetometer with low drift. XIV IMEKO Word Congress. New measurements—challenges and visions, Tampere, Finland, IVA(4) pp 121–126Google Scholar
  26. Korepanov V, Marusenkov A, Rasson J (2008) A candidate for a new INTERMAGNET standard 1-second variometer: key features and test results. XIII IAGA Geomagnetic Observatory Workshop, Co., USA, p 26Google Scholar
  27. Kubik J, Janosek M, Ripka P (2007) Low-power fluxgate sensor signal processing using gated differential integrator. Sens Lett 5:149–152CrossRefGoogle Scholar
  28. LC ISR (2009) Accessed 5 May 2011
  29. Liu J, Sellmyer D J, Shindo D (ed) (2006) Nanostructural effects. In: Handbook of advanced magnetic materials. Volume 1. SpringerGoogle Scholar
  30. Magnes W, Oberst M, Valavanoglou A, Hauer H, Hagen C, Jernej I, Neubauer H, Baumjohann W, Pierce D, Means J, Falkner P (2008) Highly integrated front-end electronics for spaceborne fluxgate sensors. Meas Sci Technol 19:115801–115813CrossRefGoogle Scholar
  31. Magni A, Fiorino F, Caprile A, Ferrara E, Martino L (2011) Fluxmetrix-magnetooptical approach to broadband energy losses in amorphous ribbons J. Appl. Phys. 109:07A322Google Scholar
  32. Magson GmbH Ringcores (2008) Accessed 19 April 2008
  33. Marusenkov AA (2003) The possibilties of increasing efficiency of flux-gate magnetometers. Ukrainian Metrol J 1:42–44 (in Russian)Google Scholar
  34. Marusenkov A (2006) Operation peculiarities of the fluxgate sensor in non-uniform compensation magnetic field. In: Proceedings of the IXth International Conference “Modern problems of radio engineering, telecommunications and computer science. TCSET’2006, pp 327–329Google Scholar
  35. Mayer S Instruments. Accessed 15 April 2011
  36. Moldovanu A, Diaconu ED, Moldovanu E, Macovei C, Moldovanu BO, Bayreuther G (2000) The applicability of VITROVAC6025X ribbons for parallel-gated configuration sensors. Sens Actuators 81:193–196CrossRefGoogle Scholar
  37. Musmann G, Afanassiev YV (2010) Fluxgate magnetometers for space research. Books on Demand GmbH, Norderstedt: p 292Google Scholar
  38. Mykolaitis H (1994) Cyclic magnetization noise of nonlinear ferromagnetic cores. J Magn Magn Mater 133:520–524CrossRefGoogle Scholar
  39. Narod B (2006) Magnetic permeability and domain structure, and their influence on fluxgate magnetometer noise. In: Proceedings of EGU General Assembly 2006, Vienna, AustriaGoogle Scholar
  40. Nielsen OV, Petersen JR, Fernandez A, Hernando B, Spisak P, Primdahl F, Moser N (1991) Analysis of a fluxgate magnetometer based on metallic glass sensors. Meas Sci Technol 2:435–440CrossRefGoogle Scholar
  41. Paperno E (2004) Suppression of magnetic noise in the fundamental-mode orthogonal fluxgate. Sens Actuators A 116:405–409CrossRefGoogle Scholar
  42. Paperno E, Weiss E, Plotkin A (2008) A tube-core orthogonal fluxgate operated in fundamental mode. Trans Magn 44:4018–4021CrossRefGoogle Scholar
  43. Primdahl F, Jensen AP (1982) Compact spherical coil for flux-gate magnetometer vector feedback. J Phys E Sci Instrum 15:221–226CrossRefGoogle Scholar
  44. Ripka P (ed.) (2001) Magnetic Sensors and Magnetometers. Artech HouseGoogle Scholar
  45. Sasada I, Kashima H (2009) Simple design for orthogonal fluxgate magnetometer in fundamental mode. J Magn Soc Jpn 33(2):43–45CrossRefGoogle Scholar
  46. Shirae K (1984) Noise in amorphous magnetic materials. IEEE Trans on Magn 20(5):1299–1301CrossRefGoogle Scholar
  47. Stern DP (2002) A millennium of geomagnetism. Rev Geophys 40(3):B1–B30CrossRefGoogle Scholar
  48. Tejedor M, Hernando B, Sánchez ML (1995) Magnetization processes in metallic glasses for fluxgate sensors. J Magn Magn Mater 140–144:349–350CrossRefGoogle Scholar
  49. Vetoshko PM, Valeiko VV, Nikitin PI (2003) Epitaxial yttrium iron garnet film as an active medium of an even-harmonic magnetic field transducer. Sens Actuators A 106:270–273CrossRefGoogle Scholar
  50. Weiss E, Paperno E (2011) Noise investigation of the orthogonal fluxgate employing alternating direct current bias. J Appl Phys 109: 07E529Google Scholar
  51. Yang JS, Son D, Cho Y, Ryu KS (1997) Soft Magnetic properties of annealed co-based amorphous Co66Fe4Ni1B15Si14 alloy ribbon. J Magn 2(4):130–134Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Lviv Centre of Institute for Space ResearchLvivUkraine

Personalised recommendations