Surveys in Geophysics

, Volume 33, Issue 3–4, pp 483–501 | Cite as

Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate

  • E. RozanovEmail author
  • M. Calisto
  • T. Egorova
  • T. Peter
  • W. Schmutz


We evaluate the influence of the galactic cosmic rays (GCR), solar proton events (SPE), and energetic electron precipitation (EEP) on chemical composition of the atmosphere, dynamics, and climate using the chemistry-climate model SOCOL. We have carried out two 46-year long runs. The reference run is driven by a widely employed forcing set and, for the experiment run, we have included additional sources of NO x and HO x caused by all considered energetic particles. The results show that the effects of the GCR, SPE, and EEP fluxes on the chemical composition are most pronounced in the polar mesosphere and upper stratosphere; however, they are also detectable and statistically significant in the lower atmosphere consisting of an ozone increase up to 3 % in the troposphere and ozone depletion up to 8 % in the middle stratosphere. The thermal effect of the ozone depletion in the stratosphere propagates down, leading to a warming by up to 1 K averaged over 46 years over Europe during the winter season. Our results suggest that the energetic particles are able to affect atmospheric chemical composition, dynamics, and climate.


Energetic particles Atmospheric chemistry Dynamics Climate Modeling 



ER is partially supported by the Swiss National Science Foundation under grant CRSI122-130642 (FUPSOL). TE has received part of her funding from the European Commission’s Seventh Framework Programme (FP7/20072013) under the grant agreement no.218816 (SOTERIA, project, We acknowledge useful discussions within the ISSI Teams on Study of Cosmic Ray Influence upon Atmospheric Processes and Geospace Coupling to Polar Atmosphere.


  1. Aikin A (1994) Energetic particle-induced enhancement of stratospheric nitric acid. Geophys Res Lett 21(10):859–862CrossRefGoogle Scholar
  2. Baker DN, Barth CA, Mankoff KE, Kanekal SG, Bailey SM, Mason GM, Mazur JE (2001) Relationships between precipitating auroral zone electrons and lower thermospheric nitric oxide densities: 1998–2000. J Geophys Res 106(A11):24465–24480. doi: 10.1029/2001JA000078 CrossRefGoogle Scholar
  3. Baldwin MP, Dunkerton TJ (2001) The solar cycle and stratosphere‐troposphere dynamical coupling. Science 294:581–584. doi: 10.1126/science.1063315 CrossRefGoogle Scholar
  4. Barnard L, Lockwood M (2011) A survey of gradual solar energetic particle events. J Geophys Res 116:A05103. doi: 10.1029/2010JA016133 CrossRefGoogle Scholar
  5. Barth CA, Baker DN, Mankoff KD, Bailey SM (2001) The northern auroral region as observed in nitric oxide. Geophys Res Lett 28:1463–1466CrossRefGoogle Scholar
  6. Barth CA, Mankoff KD, Balley SM, Solomon SC (2003) Global observations of nitric oxide in the thermosphere. J Geophys Res 108:1027. doi: 10.1029/2002JA009458 CrossRefGoogle Scholar
  7. Baumgaertner AJG, Jöckel P, Brühl C (2009) Energetic particle precipitation in ECHAM5/MESSy1—Part 1: downward transport of upper atmospheric NOx produced by low energy electrons. Atmos Chem Phys 9:2729–2740. doi: 10.5194/acp-9-2729-2009 CrossRefGoogle Scholar
  8. Baumgaertner A, Seppälä A, Jöckel P, Clilverd MA (2011) Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index. Atmos Chem Phys 11:4521–4531CrossRefGoogle Scholar
  9. Bazilevskaya GA, Usoskin IG, Flückiger EO, Harrison RG, Desorgher L, Bütikofer R, Krainev MB, Makhmutov VS, Stozhkov YI, Svirzhevskaya AK, Svirzhevsky NS, Kovaltsov GA (2008) Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137:149–173CrossRefGoogle Scholar
  10. Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. Springer, The Netherlands, p 644Google Scholar
  11. Calisto M, Usoskin I, Rozanov E, Peter T (2011) Influence of galactic cosmic rays on atmospheric composition and dynamics. Atmos Chem Phys 11:4547–4556. doi: 10.5194/acp-11-4547-2011 CrossRefGoogle Scholar
  12. Callis LB, Natarajan M, Evans DS, Lambeth JD (1998) Solar atmospheric coupling by electrons (SOLACE): 1. Effects of the May 12, 1997 solar event on the middle atmosphere. J Geophys Res 103(D21):28405–28419. doi: 10.1029/98JD02408 CrossRefGoogle Scholar
  13. Cane HV, Mewaldt RA, Cohen CMS, von Rosenvinge TT (2006) Role of flares and shocks in determining solar energetic particle abundances. J Geophys Res 111:A06S90. doi: 10.1029/2005JA011071 CrossRefGoogle Scholar
  14. IPCC (Intergovernmental Panel on Climate Change) (2007) The physical science basis, working group I contribution to the fourth assessment report of the IPCC, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  15. Clilverd MA, Seppälä A, Rodger CJ, Mlynczak MG, Kozyra JU (2009) Additional stratospheric NOx production by relativistic electron precipitation during the 2004 spring NOx descent event. J Geophys Res 114:A04305. doi: 10.1029/2008JA013472 CrossRefGoogle Scholar
  16. Damiani A, Storini M, Laurenza M, Rafanelli C (2008) Solar particle effects on minor components of the Polar atmosphere. Ann Geophys 26:361–370CrossRefGoogle Scholar
  17. Egorova T, Rozanov E, Zubov V, Karol IL (2003) Model for investigating ozone trends (MEZON). Izvestiya Atmos Ocean Phys 39:277–292Google Scholar
  18. Egorova T, Rozanov E, Zubov V, Manzini E, Schmutz W, Peter T (2005) Chemistry-climate model SOCOL: a validation of the present-day climatology. Atmos Chem Phys 5:1557–1576CrossRefGoogle Scholar
  19. Egorova T, Rozanov E, Ozolin Y, Shapiro A, Calisto M, Peter T, Schmutz W (2011) The atmospheric effects of October 2003 solar proton event simulated with the chemistry–climate model SOCOL using complete and parameterized ion chemistry. J Atmos Solar Terr Phys 73:356–365. doi: 10.1016/j.jastp.2010.01.009 CrossRefGoogle Scholar
  20. Emery BA, Coumans V, Evans DS, Germany GA, Greer MS, Holeman E, Kadinsky-Cade K, Rich FJ, Xu W (2008) Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J Geophys Res 113:A06311. doi: 10.1029/2007JA012866 CrossRefGoogle Scholar
  21. Eyring V, Waugh DW, Bodeker GE, Cordero E, Akiyoshi H, Austin J, Beagley SR, Boville BA, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Dameris M, Deckert R, Deushi M, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Mancini E, Manzini E, Marsh DR, Matthes S, Nagashima T, Newman PA, Nielsen JE, Pawson S, Pitari G, Plummer DA, Rozanov E, Schraner M, Scinocca JF, Semeniuk K, Shepherd TG, Shibata K, Steil B Stolarski RS, Tian W, Yoshiki M (2007) Multimodel projections of stratospheric ozone in the 21st century. J Geophys Res 112:D16303. doi: 10.1029/2006JD008332
  22. Funke B, López-Puertas M, Gil-Lopez S, von Clarmann T, Stiller GP, Fischer H, Kellman S (2005) Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic winter 2003 and Arctic winter 2002/2003. J Geophys Res 112:D24308. doi: 10.1029/2005JD006463,2005 CrossRefGoogle Scholar
  23. Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, Kieser J, Krivolutsky A, López-Puertas M, Marsh DR, Reddmann T, Rozanov E, Salmi S-M, Sinnhuber M, Stiller GP, Verronen PT, Versick S, von Clarmann T, Vyushkova TY, Wieters N, Wissing JM (2011) Composition changes after the “Halloween” solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos Chem Phys Discuss 11:9407–9514CrossRefGoogle Scholar
  24. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitman D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi: 10.1029/2009RG000282 CrossRefGoogle Scholar
  25. Jackman CH, Marsh DR, Vitt FM, Garcia RR, Fleming EL, Labow GJ, Randall CE, López-Puertas M, Funke B, von Clarmann T, Stiller GP (2008) Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos Chem Phys 8:765–785. doi: 10.5194/acp-8-765-2008 CrossRefGoogle Scholar
  26. Jackman CH, Marsh DR, Vitt FM, Garcia RR, Randall CE, Fleming EL, Frith SM (2009) Long-term middle atmosphere influence of very large solar proton events. J Geophys Res D114:11304. doi: 10.1029/2008JD011415 CrossRefGoogle Scholar
  27. Lam MM, Horne RB, Meredith NP, Glauert SA, Moffat‐Griffin T, Green JC (2010) Origin of energetic electron precipitation > 30 keV into the atmosphere. J Geophys Res 115:A00F08. doi: 10.1029/2009JA014619 CrossRefGoogle Scholar
  28. Langematz U, Grenfell JL, Matthes K, Mieth P, Kunze M, Steil B, Brühl C (2005) Chemical effects in 11-year solar cycle simulations with the Freie Universit¨at Berlin Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM). Geophys Res Lett 32:L13803. doi: 10.1029/2005GL022686 CrossRefGoogle Scholar
  29. López-Puertas M, Funke B, von Clarmann T, Fischer H, Stiller GP (2006) The stratospheric and mesospheric NOy in the 2002–2004 polar winters as measured by MIPAS/ENVISAT. Space Sci Rev 125:403–416. doi: 10.1007/s11214-006-9073-2 CrossRefGoogle Scholar
  30. López‐Puertas M, Funke B, Gil‐Lopez S, von Clarmann T, Stiller GP, Höpfner M, Kellmann S, Fischer J, Jackman CH (2005) Observation of NOx enhancement and ozone depletion in the Northern and Southern hemispheres after the October–November 2003 solar proton events. J Geophys Res 110:A09S43. doi: 10.1029/2005JA011050 CrossRefGoogle Scholar
  31. Manzini E, McFarlane NA, McLandress C (1997) Impact of the doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J Geophys Res 102:25751–25762CrossRefGoogle Scholar
  32. Marsh DR, Garcia RR, Kinnison DE, Boville BA, Sassi F, Solomon SC, Matthes K (2007) Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112:D23306. doi: 10.1029/2006JD008306 CrossRefGoogle Scholar
  33. Meredith NP, Horne RB, Lam MM, Denton MH, Borovsky JE, Green JC (2011) Energetic electron precipitation during high‐speed solar wind stream driven storms. J Geophys Res 116:A05223. doi: 10.1029/2010JA016293 CrossRefGoogle Scholar
  34. Millan RM, Thorne RM (2007) Review of radiation belt relativistic electron losses. J Atmos Solar Terr Phys 69:362–377CrossRefGoogle Scholar
  35. Morgenstern O, Giorgetta MA, Shibata K, Eyring V, Waugh DW, Shepherd TG, Akiyoshi H, Austin J, Baumgaertner AJG, Bekki S, Braesicke P, Brühl C, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith SM, Garny H, Gettelman A, Hardiman SC, Hegglin MI, Jöckel P, Kinnison DE, Lamarque JF, Mancini E, Manzini E, Marchand M, Michou M, Nakamura T, Nielsen JE, Oliviė D, Pitari G, Plummer DA, Rozanov E, Scinocca JF, Smale D, Teyssedre H, Toohey M, Tian W, Yamashita Y (2010) Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J Geophys Res 115:D00M02. doi: 10.1029/2009jd013728
  36. Porter HS, Jackman CH, Green AES (1976) Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J Chem Phys 65:1CrossRefGoogle Scholar
  37. Randall CE, Harvey VL, Singleton CS, Bailey SM, Bernath PF, Codrescu M, Nakajima H, Russell JM (2007) Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1991–2005. J Geophys Res 112:D08308. doi: 10.1029/2006JD007696 CrossRefGoogle Scholar
  38. Reames D (1999) Particle acceleration at the sun and in the heliosphere. Space Sci Rev 90:413–491CrossRefGoogle Scholar
  39. Reddmann T, Ruhnke R, Versick S, Kouker W (2010) Modeling disturbed stratospheric chemistry during solar-induced NOx enhancements observed with MIPAS/ENVISAT. J Geophys Res 115:D00I11. doi: 10.1029/2009JD012569 CrossRefGoogle Scholar
  40. Richardson IG, Cliver EW, Cane HV (2000) Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J Geophys Res 105(A8):18203–18213CrossRefGoogle Scholar
  41. Rozanov E, Schlesinger ME, Zubov V, Yang F, Andronova NG (1999) The UIUC three-dimensional stratospheric chemical transport model: Description and evaluation of the simulated source gases and ozone. J Geophys Res 104:11755–11781CrossRefGoogle Scholar
  42. Rozanov E, Callis L, Schlesinger M, Yang F, Andronova N, Zubov V (2005) Atmospheric response to NOy source due to energetic electron precipitation. Geophys Res Lett 32:L14811. doi: 10.1029/2005GL023041 CrossRefGoogle Scholar
  43. Rusch D, Gerard G-C, Solomon S, Crutzen P, Reid G (1981) The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. 1. Odd nitrogen. Planet Space Sc 29:767–774CrossRefGoogle Scholar
  44. Schraner M, Rozanov E, Schnadt Poberaj C, Kenzelmann P, Fischer AM, Zubov V, Luo BP, Hoyle CR, Egorova T, Fueglistaler S, Brönnimann S, Schmutz W, Peter T (2008) Technical note: chemistry-climate model SOCOL: version2.0 with improved transport and chemistry/micro-physics schemes. Atmos Chem Phys 8:5957–5974CrossRefGoogle Scholar
  45. Semeniuk K, Fomichev VI, McConnell JC, Fu C, Melo SML, Usoskin IG (2011) Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos Chem Phys 11:5045–5077CrossRefGoogle Scholar
  46. Seppälä A, Verronen PT, Clilverd MA, Randall CE, Tamminen J, Sofieva V, Backman L, Kyrolä E (2007a) Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys Res Lett 34:L12810. doi: 10.1029/2007GL029733 CrossRefGoogle Scholar
  47. Seppälä A, Clilverd MA, Rodger CJ (2007b) NOx enhancements in the middle atmosphere during 2003–2004 polar winter: Relative significance of solar proton events and the aurora as a source. J Geophys Res 112:D23303. doi: 10.1029/2006JD008326 CrossRefGoogle Scholar
  48. Seppälä A, Randall CE, Clilverd MA, Rozanov E, Rodger CJ (2009) Geomagnetic activity and polar surface air temperature variability. J Geophys Res 114:A10312. doi: 10.1029/2008JA014029 CrossRefGoogle Scholar
  49. Shepherd TG (2002) Issues in stratosphere‐troposphere coupling. J Meteorol Soc Jpn 80:769–792. doi: 10.2151/jmsj.80.769 CrossRefGoogle Scholar
  50. Sinnhuber M, Kazeminejad S, Wissing JM (2011) Interannual variation of NOx from the lower thermosphere to the upper stratosphere in the years 1991–2005. J Geophys Res 116:A02312. doi: 10.1029/2010JA015825 CrossRefGoogle Scholar
  51. Siskind DE, Nedoluha GE, Randall CE, Fromm M, Russell JM III (2000) An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere. Geophys Res Lett 27(3):329–332. doi: 10.1029/1999GL010940 CrossRefGoogle Scholar
  52. Solomon S, Rusch DW, Gerard J-C, Reid GC, Crutzen PJ (1981) The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, II, Odd hydrogen. Planet Space Sci 29(8):885–892CrossRefGoogle Scholar
  53. SPARC CCMVal (2010) SPARC report on the evaluation of chemistry-climate models In: Eyring V, Shepherd TG, Waugh DW (eds) SPARC, Toronto, Ontario, Canada, Tech. Rep. WCRP-132/WMO/TD-1526/SPARC Rep, p 5Google Scholar
  54. Turunen E, Verronen PT, Seppälä A, Rodger CJ, Clilverd MA, Tamminen J, Enell CF, Ulich T (2009) Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms. J Atmos Sol Terr Phy 71:1176–1189. doi: 10,1016/j.jastp.2008.07.05 CrossRefGoogle Scholar
  55. Usoskin IG, Kovaltsov GA (2006) Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J Geophys Res 111:D21206. doi: 10.1029/2006JD007150 CrossRefGoogle Scholar
  56. Usoskin IG, Kovaltsov GA, Mironova IA (2010) Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J Geophys Res 115:D10302. doi: 10.1029/2009JD013142 CrossRefGoogle Scholar
  57. Verronen PT, Rodger CJ, Clilverd MA, Wang S (2011) First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. J Geophys Res 116:D07307. doi: 10.1029/2010JD014965 CrossRefGoogle Scholar
  58. Wang Y, Jacob DJ, Logan JA (1998) Global simulation of tropospheric O3--NOx-hydrocarbon chemistry, 3. Origin of tropospheric ozone and effects of non-methane hydrocarbons. J Geophys Res 103:10757–10767CrossRefGoogle Scholar
  59. Wissing JM, Kallenrode M-B, Wieters N, Winkler H, Sinnhuber M (2010) Atmospheric ionization module Osnabrück (AIMOS): 2. Total particle inventory in the October–November 2003 event and ozone. J Geophys Res 115:A02308. doi: 10.1029/2009JA014419 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. Rozanov
    • 1
    • 2
    Email author
  • M. Calisto
    • 3
  • T. Egorova
    • 1
  • T. Peter
    • 2
  • W. Schmutz
    • 1
  1. 1.Physikalisch-Meteorologisches Observatorium Davos/World Radiation CenterDavosSwitzerland
  2. 2.Institute for Atmospheric and Climate Science ETHZurichSwitzerland
  3. 3.International Space Science Institute (ISSI)BernSwitzerland

Personalised recommendations