Surveys in Geophysics

, Volume 33, Issue 3–4, pp 535–555 | Cite as

The Water Vapour Continuum: Brief History and Recent Developments

  • Keith P. Shine
  • Igor V. Ptashnik
  • Gaby Rädel


The water vapour continuum is characterised by absorption that varies smoothly with wavelength, from the visible to the microwave. It is present within the rotational and vibrational–rotational bands of water vapour, which consist of large numbers of narrow spectral lines, and in the many ‘windows’ between these bands. The continuum absorption in the window regions is of particular importance for the Earth’s radiation budget and for remote-sensing techniques that exploit these windows. Historically, most attention has focused on the 8–12 μm (mid-infrared) atmospheric window, where the continuum is relatively well-characterised, but there have been many fewer measurements within bands and in other window regions. In addition, the causes of the continuum remain a subject of controversy. This paper provides a brief historical overview of the development of understanding of the continuum and then reviews recent developments, with a focus on the near-infrared spectral region. Recent laboratory measurements in near-infrared windows, which reveal absorption typically an order of magnitude stronger than in widely used continuum models, are shown to have important consequences for remote-sensing techniques that use these windows for retrieving cloud properties.


Earth radiation budget Water vapour spectroscopy Water dimers Remote sensing 



This work was supported by the EPSRC/NERC CAVIAR consortium; IVP also acknowledges support from Russian National contract 02.740.11.5198. We thank the referees for their comments.


  1. Adel A (1939) Atmospheric absorption of infrared solar radiation at the Lowell Observatory I. Astrophys J 89:1–9CrossRefGoogle Scholar
  2. Adel A, Lampland CO (1940) Atmospheric absorption of infrared solar radiation at the Lowell Observatory—III and IV. The spectral intervals 8.0–11.0 μ and 11.0–14.0 μ. Astrophys J 91:481–487CrossRefGoogle Scholar
  3. Adiks TG, Aref’ev VN, Dianov-Klokov VI (1975) Influence of molecular absorption on propagation of CO2 laser radiation in terrestrial atmosphere (review). Sov J Quant Electron 5:481–488CrossRefGoogle Scholar
  4. Anderson PW (1949) Pressure broadening in the microwave and infra-red regions. Phys Rev 76:647–671CrossRefGoogle Scholar
  5. Anthony R (1952) Atmospheric absorption of solar infrared radiation. Phys Rev 85:674CrossRefGoogle Scholar
  6. Aref’ev VN, Dianov-Klokov VI (1977) Attenuation of 10.6-μm radiation by water vapor and the role of (H2O)2 dimers. Opt Spectrosc 42:488–492Google Scholar
  7. Aref'ev VN, Dianov-Klokov VI, Radionov VF, Sizov NI (1975) Laboratory measurements of attenuation of CO2 laser radiation by pure water vapor. Opt Spectrosc 39:560–561Google Scholar
  8. Arking A (1999) Bringing climate models into agreement with observations of atmospheric absorption. J Clim 12:1589–1600CrossRefGoogle Scholar
  9. Baranov YI (2011) The continuum absorption in H2O + N2 mixtures in the 2000–3250 cm−1 spectral region at temperatures from 326 to 363 K. J Quant Spectrosc Radiat Transf. doi: 10.1016/j.jqsrt.2011.06.005
  10. Baranov YI, Lafferty WJ (2011) The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K. J Quant Spectrosc Radiat Transf 112:1304–1313CrossRefGoogle Scholar
  11. Baranov YI, Lafferty WJ, Fraser GT, Ma Q, Tipping RH (2008) Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K. J Quant Spectrosc Radiat Transf 109:2291–2302CrossRefGoogle Scholar
  12. Bignell KJ (1970) The water-vapour infra-red continuum. Q J R Meteorol Soc 96:390–403CrossRefGoogle Scholar
  13. Bignell K, Saiedy F, Sheppard PA (1963) On the atmospheric infrared continuum. J Opt Soc Am 53:466–479CrossRefGoogle Scholar
  14. Bogdanova Ju V, Rodimova OB (2010) Line shape in far wings and water vapor absorption in a broad temperature interval. J Quant Spectrosc Radiat Transf 111:2298–2307CrossRefGoogle Scholar
  15. Bohlander RA, Emery RJ, Llewellyn-Jones DT, Gimmestad GG, Gebbie HA, Simpson OA, Gallagher JJ, Perkowitz S (1980) Excess absorption by water vapor and comparison with theoretical dimer absorption. In: Deepak A, Wilkerson TD, Ruhnke LH (eds) Atmospheric water vapor. Academic Press, New York, pp 241–254Google Scholar
  16. Bolle HJ (1963) The 15–26 micron emission spectrum at Jungfraujoch (3570 m). Appl Optics 2:571–580CrossRefGoogle Scholar
  17. Braun C, Leidecker H (1974) Rotational and vibrational spectra for the H2O dimer: theory and comparison with experimental data. J Chem Phys 61:3104–3113CrossRefGoogle Scholar
  18. Breon F-M, Doutriaux-Boucher M (2005) A comparison of cloud droplet radii measured from space. IEEE Trans Geosci Rem Sens 43:1796–1805CrossRefGoogle Scholar
  19. Brunt D (1932) Notes on radiation in the atmosphere. Q J R Meteorol Soc 58:389–420CrossRefGoogle Scholar
  20. Burch DE (1970) Investigation of the absorption of infrared radiation by atmospheric gases. Semi-annual technical report Philco-Ford Corporation Aeronutronic Division Newport Beach CA Rept. U-4784Google Scholar
  21. Burch DE (1981) Continuum absorption by H2O. Proc SPIE 277:28–39Google Scholar
  22. Burch DE (1985) Absorption by H2O in narrow windows between 3000 and 4200 cm−1. US Air Force Geophysics Laboratory report AFGL-TR-85-0036 Hanscom Air Force Base, MAGoogle Scholar
  23. Burch D, Alt R (1984) Continuum absorption by H2O in the 700–1200 and 2400–2800 cm−1 windows. AFGL-TR-84-0128 Air Force Geophysics Laboratory Hanscom AFB, MAGoogle Scholar
  24. Burch DE, Gryvnak DA (1978) Infrared absorption by CO2 and H2O. Report AFCRL-TR-78-0154 Air Force Cambridge Research Laboratory Hanscom AFB, MAGoogle Scholar
  25. Burch DE, Gryvnak DA (1980) Continuum absorption by H2O vapor in the infrared and millimetre wave regions. In: Deepak A, Wilkerson TD, Ruhnke LH (eds) Atmospheric water vapor. Academic Press, New York, pp 47–76Google Scholar
  26. Clough SA, Kneizys FX, Davis R, Gamache R, Tipping R (1980) Theoretical line shape for H2O vapor: application to the continuum. In: Deepak A, Wilkerson TD, Ruhnke LH (eds) Atmospheric water vapor. Academic Press, New York, pp 25–46Google Scholar
  27. Clough SA, Kneizys FX, Davies RW (1989) Line shape and the water vapor continuum. Atmos Res 23:229–241CrossRefGoogle Scholar
  28. Clough SA, Iacono MJ, Moncet J-L (1992) Line-by-Line calculation of atmospheric fluxes and cooling rates: application to water vapor. J Geophys Res 97:15761–15785CrossRefGoogle Scholar
  29. Cormier JG, Ciurylo R, Drummond JR (2002) Cavity ringdown spectroscopy measurements of the infrared water vapor continuum. J Chem Phys 116:1030–1034CrossRefGoogle Scholar
  30. Cormier JG, Hodges JT, Drummond JR (2005) Infrared water vapor continuum absorption at atmospheric temperatures. J Chem Phys 122:114309CrossRefGoogle Scholar
  31. Cowling TG (1942) The absorption of water vapour in the far infra-red. Rep Prog Phys 9:29–41CrossRefGoogle Scholar
  32. Cox SK (1969) Observational evidence of anomalous infrared cooling in a clear tropical atmosphere. J Atmos Sci 26:1347–1349CrossRefGoogle Scholar
  33. Cox SK (1973) Infra-red heating calculations with a water vapour pressure broadened continuum. Q J R Meteorol Soc 99:669–679CrossRefGoogle Scholar
  34. Delamere JS, Clough SA, Payne VH, Mlawer EJ, Turner DD, Gamache RR (2010) A far-infrared radiative closure study in the Arctic: application to water vapor. J Geophys Res 115:D17106CrossRefGoogle Scholar
  35. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719CrossRefGoogle Scholar
  36. Elsasser WM (1938a) Far infrared absorption of atmospheric water vapor. Astrophys J 87:497–507CrossRefGoogle Scholar
  37. Elsasser WM (1938b) Note on atmospheric absorption caused by the rotational water band. Phys Rev 53:768CrossRefGoogle Scholar
  38. Elsasser WM (1938c) New values for the infrared absorption coefficient of atmospheric water vapor. Mon Weather Rev 66:175–178CrossRefGoogle Scholar
  39. Epifanov SY, Vigasin AA (1997) Subdivision of phase space for anisotropically interacting water molecules. Mol Phys 90:101–106Google Scholar
  40. Fano U (1963) Pressure broadening as a prototype of relaxation. Phys Rev 131:259–268CrossRefGoogle Scholar
  41. Fomin VV, Tvorogov SD (1973) Formation of the far wing contour of spectral lines broadened by a foreign gas; analysis of exponential decrease of continuous absorption beyond the band head of the 4.3 μm band of CO2. Appl Opt 12:584–589CrossRefGoogle Scholar
  42. Fowle FE (1917) Water-vapor transparency to low-temperature radiation. Smithsonian Miscellaneous Collections 68:8 (68 p)Google Scholar
  43. Garden A, Halonen L, Kjaergaard H (2008) Calculated band profiles of the OH-stretching transitions in water dimer. J Phys Chem 112:7439–7447Google Scholar
  44. Gebbie HA, Harding WR, Hilsum C, Pryce AW, Roberts V (1951) Atmospheric transmission in the 1 to 14 μm region. Proc R Soc Lond A 206:87–107CrossRefGoogle Scholar
  45. Goody RM, Yung YL (1989) Atmospheric radiation: theoretical basis. Oxford University Press, OxfordGoogle Scholar
  46. Grant WB (1990) Water vapor absorption coefficients in the 8–13-μm spectral region. Appl Opt 29:451–462CrossRefGoogle Scholar
  47. Green PD, Newman SM, Beeby RJ, Murray JE, Pickering JC, Harries JE (2012) Recent advances in measurement of the water vapour continuum in the far-IR spectral region. Phil Trans Roy Soc A (to appear). doi: 10.1098/rsta.2011.0263
  48. Han Y, Shaw JA, Churnside JH, Brown PD, Clough SA (1997) Infrared spectral radiance measurements in the tropical Pacific atmosphere. J Geophys Res 102:4353–4356CrossRefGoogle Scholar
  49. Hettner G (1918) Über das ultrarote Absorptionsspektrum des Wasserdampfes. Ann Phys 360:476–496CrossRefGoogle Scholar
  50. Hinderling J, Sigrist MW, Kneubühl FK (1987) Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm spectral window. Infrared Phys 27:63–120CrossRefGoogle Scholar
  51. Kiehl J, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteor Soc 78:197–208CrossRefGoogle Scholar
  52. Kjaergaard HG, Robinson TW, Howard DL, Daniel JS, Headrick JE, Vaida V (2003) Complexes of importance to the absorption of solar radiation. J Phys Chem A 107:10680–10686CrossRefGoogle Scholar
  53. Kjaergaard H, Garden A, Chaban G, Gerber R, Matthews D, Stanton J (2008) Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches. J Phys Chem A 112:4324–4335CrossRefGoogle Scholar
  54. Klimeshina TE, Bogdanova YV, Rodimova OB (2011) Continuum absorption by water vapor in the atmospheric transparency windows 8-12 and 3-5 μm. Atmos Oceanic Opt (in press)Google Scholar
  55. Lee M-S, Baletto F, Kanhere DG, Scandolo S (2008) Far-infrared absorption of water clusters by first-principles molecular dynamics. J Chem Phys 128:214506CrossRefGoogle Scholar
  56. Leforestier C, Tipping RH, Ma Q (2010) Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption. J Chem Phys 132:164302Google Scholar
  57. Lokshtanov SE, Ivanov SV, Vigasin AA (2005) Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs. J Mol Struct 742:31–36CrossRefGoogle Scholar
  58. Ma Q, Tipping RH (1991) A far wing line shape theory and its application to the water continuum. J Chem Phys 95:6290–6301CrossRefGoogle Scholar
  59. Ma Q, Tipping RH (1992) A far wing line shape theory and its application to the foreign-broadened water continuum absorption III. J Chem Phys 97:818–828CrossRefGoogle Scholar
  60. Ma Q, Tipping RH (1999) The averaged density matrix in the coordinate representation: application to the calculation of the far-wing line shapes for H2O. J Chem Phys 111:5909–5921CrossRefGoogle Scholar
  61. Ma Q, Tipping RH (2002) The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O–H2O. J Chem Phys 116:4102–4115CrossRefGoogle Scholar
  62. Ma Q, Tipping RH, Leforestier C (2008) Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines. J Chem Phys 128:124313CrossRefGoogle Scholar
  63. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259CrossRefGoogle Scholar
  64. Mlawer EJ, Payne VH, Moncet J-L, Delamere JS, Alvarado MJ, Tobin DD (2012) Development and recent evaluation of the MT_CKD model of continuum absorption. Phil Trans Roy Soc A (to appear). doi: 10.1098/rsta.2011.0295
  65. Montgomery GP (1978) Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm−1. Appl Opt 17:2299–2303CrossRefGoogle Scholar
  66. Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J Atmos Sci 47:1878–1893CrossRefGoogle Scholar
  67. Nesmelova LI, Rodimova OB, Tvorogov SD (1986) Spectral line shape and intermolecular interaction. Nauka Novosibirsk, 216 ppGoogle Scholar
  68. Newman SM, Green PD, Ptashnik IV, Gardiner TD, Coleman MD, McPheat RA, Smith KM (2012) Airborne and satellite remote sensing of the mid-infrared water vapour continuum. Phil Trans Roy Soc A (to appear). doi: 10.1098/rsta.2011.0223
  69. Nordstrom RJ, Thomas ME (1980) The water vapour continuum as wings of strong absorption lines. In: Deepak A, Wilkerson TD, Ruhnke LH (eds) Atmospheric water vapor. Academic Press, New York, pp 77–100Google Scholar
  70. Painemal D, Zuidema P (2011) Assessment of MODIS cloud effective radius and optical thickness retrievals over the south-east Pacific with VOCALS-Rex in situ measurements. J Geophys Res (in press). doi: 10.1029/2011JD016155
  71. Paynter DJ, Ptashnik IV, Shine KP, Smith KM (2007) Pure water vapor continuum measurements between 3100 and 4400 cm−1: evidence for water dimer absorption in near atmospheric conditions. Geophys Res Lett 34:L12808Google Scholar
  72. Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG (2009) Laboratory measurements of the water vapor continuum in the 1200 cm−1–8000 cm−1 region between 293 K and 351 K. J Geophys Res 114:D21301CrossRefGoogle Scholar
  73. Penner SS, Varanasi P (1967) Spectral absorption coefficients in the pure rotation spectrum of water vapor. J Quant Spectrosc Radiat Transf 7:687–690CrossRefGoogle Scholar
  74. Poberovsky AV (1976) Problemy fiziki atmosfery. Sbornik Trudov Univ Leningrad 13:81–87 (in Russian)Google Scholar
  75. Ptashnik IV (2008) Evidence for the contribution of water dimers to the near-IR water vapour self-continuum. J Quant Spectrosc Radiat Transf 109:831–852CrossRefGoogle Scholar
  76. Ptashnik IV, Smith KM, Shine KP, Newnham DA (2004) Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1: evidence for water dimers. Q J R Meteorol Soc 130:2391–2408CrossRefGoogle Scholar
  77. Ptashnik IV, Shine KP, Vigasin AA (2011a) Water vapour self-continuum and water dimers. 1. Review and analysis of recent work. J Quant Spectrosc Radiat Transf 112:1286–1303CrossRefGoogle Scholar
  78. Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG (2011b) Water vapor continuum absorption in near-infrared windows derived from laboratory measurements. J Geophys Res 116:D16305CrossRefGoogle Scholar
  79. Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG (2012) Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements. Phil Trans Roy Soc A (to appear). doi: 10.1098/rsta.2011.0218
  80. Roach WT, Goody WM (1958) Absorption and emission in the atmospheric window from 770 to 1250 cm−1. Q J R Meteorol Soc 84:319–331CrossRefGoogle Scholar
  81. Roberts RE, Selby JEA, Biberman LM (1976) Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window. Appl Optics 15:2085–2090CrossRefGoogle Scholar
  82. Rosenkranz PW (1985) Pressure broadening of rotational bands, I. A statistical theory. J Chem Phys 83:6139–6144CrossRefGoogle Scholar
  83. Rosenkranz PW (1987) Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm−1. J Chem Phys 87:163–170CrossRefGoogle Scholar
  84. Rowe PM, Walden VP (2009) Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at −30 C. Appl Opt 48:1358–1365CrossRefGoogle Scholar
  85. Rubens H, Aschkinass E (1898) Beobachtungen über Absorption und Emission von Wasserdampf und Kohlensäure im ultrarothen Spectrum. Ann Phys 300:584–601CrossRefGoogle Scholar
  86. Schenter GK, Kathmann SM, Garrett BC (2002) Equilibrium constant for water dimerization: analysis of the partition function for a weakly bound system. J Phys Chem A 106:1557–1566CrossRefGoogle Scholar
  87. Schofield DP, Kjaergaard HG (2003) Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer. Phys Chem Chem Phys 5:3100–3105CrossRefGoogle Scholar
  88. Scribano Y, Leforestier C (2007) Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J Chem Phys 126:234301CrossRefGoogle Scholar
  89. Serio C, Masiello G, Esposito F, Di Girolamo P, Di Iorio T, Palchetti L, Bianchini G, Muscari G, Pavese G, Rizzi R, Carli B, Cuomo V (2008) Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm−1. Opt Express 16:15816–15833CrossRefGoogle Scholar
  90. Simpson GC (1928) Further studies in terrestrial radiation. Mem R Meteorol Soc 3:1–26Google Scholar
  91. Stephens GL, Tsay S-C (1990) On the cloud absorption anomaly. Q J R Meteorol Soc 116:671–704CrossRefGoogle Scholar
  92. Strong J (1941) Study of atmospheric absorption and emission in the infrared spectrum. J Franklin Inst 232:1–22CrossRefGoogle Scholar
  93. Taylor JP, Newman SM, Hewison TJ, McGrath A (2003) Water vapour line and continuum absorption in the thermal infrared-reconciling models and observations. Q J R Meteorol Soc 129:2949–2969CrossRefGoogle Scholar
  94. Thomas ME, Nordstrom RJ (1985) Line shape model for describing infrared absorption by water vapour. Appl Optics 24:3526–3530CrossRefGoogle Scholar
  95. Tipping RH, Ma Q (1995) Theory of the water vapor continuum and validations. Atmos Res 36:69–94CrossRefGoogle Scholar
  96. Tobin DC, Strow LL, Lafferty WJ, Olson WB (1996) Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor. Appl Opt 35:4724–4734CrossRefGoogle Scholar
  97. Tobin DC, Best FA, Brown PD, Clough SA, Dedecker RG, Ellingson RG, Garcia RK, Howell HB, Knuteson RO, Mlawer EJ, Revercomb HE, Short JF, van Delst PF, Walden VP (1999) Downwelling spectral radiance observations at the SHEBA ice station: water vapor continuum measurements from 17–26 micrometer. J Geophys Res 104:2081–2092CrossRefGoogle Scholar
  98. Tsao CJ, Curnutte B (1962) Line-widths of pressure broadened spectral lines. J Quant Spectrosc Radiat Transf 2:41–91CrossRefGoogle Scholar
  99. Tvorogov SD, Nesmelova LI (1976) Radiation processes in band wings of atmospheric gases. Izv Ros Akad Nauk Fiz Atmos Okeana 12:627–633Google Scholar
  100. Tyndall J (1861) On the absorption and radiation of heat by gases and vapours and on the physical connexion of radiation, absorption and conduction. Phil Trans R Soc Lond 151:1–136CrossRefGoogle Scholar
  101. Vaida V, Daniel JS, Kjaergaard HG, Goss LM, Tuck AF (2001) Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer. Q J R Meteorol Soc 127:1627–1643CrossRefGoogle Scholar
  102. Van Vleck JH, Huber DL (1977) Absorption, emission, and linebreadths: a semi-historical perspective. Rev Mod Phys 49:939–959CrossRefGoogle Scholar
  103. Van Vleck JH, Weisskopf VF (1945) On the shape of collision-broadened lines. Rev Mod Phys 17:227–236CrossRefGoogle Scholar
  104. Varanasi P, Chudamani S (1987) Self- and N2-broadened spectra of water vapor between 7.5 and 15.5 μm. J Quant Spectrosc Radiat Transf 38:407–412CrossRefGoogle Scholar
  105. Varanasi P, Chou S, Penner SS (1968) Absorption coefficients for water vapor in the 600–1000 cm−1 region. J Quant Spectrosc Radiat Transf 8:1537–1541CrossRefGoogle Scholar
  106. Vetrov AA, Yukhnevich GV (1975) Some optical properties of high-density water vapors. Opt Spectrosc 39:273–275Google Scholar
  107. Vigasin AA (1985) On the spectroscopic manifestations of weakly bound complexes in rarefied gases. Chem Phys Lett 117:85–88CrossRefGoogle Scholar
  108. Vigasin AA (1991) Bound, metastable and free states of bimolecular complexes. Infrared Phys 32:461–470CrossRefGoogle Scholar
  109. Vigasin AA (2000) Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. J Quant Spectrosc Radiat Transf 64:25–40CrossRefGoogle Scholar
  110. Vigasin AA (2003) Bimolecular absorption in atmospheric gases. In: Camy-Peyret C, Vigasin AA (eds) Weakly interacting molecular pairs: unconventional absorbers of radiation in the atmosphere. Kluwer, Netherlands, pp 23–47CrossRefGoogle Scholar
  111. Vigasin AA (2010) On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurized water vapor. Mol Phys 108:2309–2313Google Scholar
  112. Vigasin AA, Chlenova GV (1984) Water-dimer spectrum for wavelengths >8 μm, and extinction of radiation in the atmosphere. Izv Atmos Oceanic Phys 20:596–599Google Scholar
  113. Viktorova AA, Zhevakin SA (1966) Absorption of micro-radiowaves in air by water vapor dimers. Rep Acad Sci USSR 171:1061–1064 (in Russian)Google Scholar
  114. Yukhnevich GV, Tarakanova EG (1988) Some properties of the potential energy surface and vibrational spectrum of a strong hydrogen bond complex. J Mol Struct 117:495–512CrossRefGoogle Scholar
  115. Zhang Z, Platnick S (2011) An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J Geophys Res 116:D20215CrossRefGoogle Scholar
  116. Zhevakin SA, Naumov AP (1963) On the absorption coefficient of electromagnetic waves by water vapor in the region 10 μm–2 cm. Izv Vysshikh Uchebn Zavedenii Radiofiz 6:674–695 (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Keith P. Shine
    • 1
  • Igor V. Ptashnik
    • 1
    • 2
  • Gaby Rädel
    • 1
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.V.E. Zuev Institute of Atmospheric OpticsTomskRussia

Personalised recommendations