Surveys in Geophysics

, Volume 33, Issue 3–4, pp 475–481 | Cite as

Solar Irradiance Models and Measurements: A Comparison in the 220–240 nm wavelength band

  • Yvonne C. Unruh
  • Will T. Ball
  • Natalie A. Krivova
Article

Abstract

Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar cycle time scales. Here, we compare solar irradiance in the 220–240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.

Keywords

Sun: activity Sun: irradiance Spectral And Total Irradiance REconstructions (SATIRE) SOlar Radiation and Climate Experiment (SORCE) Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral Irradiance Monitor (UARS/SUSIM) 

References

  1. Ball WT, Unruh YC, Krivova NA, Solanki S, Harder JW (2011) Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron Astrophys 530:A71CrossRefGoogle Scholar
  2. DeLand MT, Cebula RP (2008) Creation of a composite solar ultraviolet irradiance data set. Journal of Geophysical Research (Space Physics) 113:A11103Google Scholar
  3. Domingo V, Ermolli I, Fox P, Fröhlich C, Haberreiter M, Krivova N, Kopp G, Schmutz W, Solanki SK, Spruit HC, Unruh Y, Vögler A (2009) Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci Rev 145:337–380CrossRefGoogle Scholar
  4. Fröhlich C (2000) Observations of irradiance variations. Space Sci Rev 94:15–24CrossRefGoogle Scholar
  5. Fröhlich C (2006) Solar irradiance variability since 1978. Revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65. doi:10.1007/s11214-006-9046-5 CrossRefGoogle Scholar
  6. Harder J, Lawrence G, Fontenla J, Rottman G, Woods T (2005a) The spectral irradiance monitor: scientific requirements, instrument design, and operation modes. Sol Phys 230:141–167CrossRefGoogle Scholar
  7. Harder JW, Fontenla J, Lawrence G, Woods T, Rottman G (2005b) The spectral irradiance monitor: measurement equations and calibration. Sol Phys 230:169–204CrossRefGoogle Scholar
  8. Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geo Phys Res Lett 36:L07801Google Scholar
  9. Harder JW, Thuillier G, Richard EC, Brown SW, Lykke KR, Snow M, McClintock WE, Fontenla JM, Woods TN, Pilewskie P (2010) The SORCE SIM solar spectrum: comparison with recent observations. Sol Phys 263:3–24. doi:10.1007/s11207-010-9555-y CrossRefGoogle Scholar
  10. Krivova NA, Solanki SK, Fligge M, Unruh YC (2003) Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? Astron Astrophys 399:L1–L4CrossRefGoogle Scholar
  11. Krivova NA, Solanki SK, Floyd L (2006) Reconstruction of solar UV irradiance in cycle 23. Astron Astrophys 452:631–639CrossRefGoogle Scholar
  12. Krivova NA, Solanki SK, Wenzler T, Podlipnik B (2009) Reconstruction of solar UV irradiance since 1974. J Geophys Res (Atmos) 114:D00I04CrossRefGoogle Scholar
  13. Krivova NA, Solanki SK, Unruh YC (2011) Towards a long-term record of solar total and spectral irradiance. J Atmos Sol Terr Phys 73:223–234CrossRefGoogle Scholar
  14. McClintock WE, Rottman GJ, Woods TN (2005a) Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. Sol Phys 230:225–258CrossRefGoogle Scholar
  15. McClintock WE, Snow M, Woods TN (2005b) Solar-stellar irradiance comparison experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol Phys 230:259–294CrossRefGoogle Scholar
  16. Morrill JS, Floyd L, McMullin D (2011) The solar ultraviolet spectrum estimated using the Mg II index and Ca II K disk activity. Sol Phys 269:253–267CrossRefGoogle Scholar
  17. Preminger DG, Walton SR, Chapman GA (2002) Photometric quantities for solar irradiance modeling. J Geophys Res (Space Phys) 107(A11):1354. doi:10.1029/2001JA009169 CrossRefGoogle Scholar
  18. Snow M, McClintock WE, Rottman G, Woods TN (2005) Solar stellar irradiance comparison experiment II (SOLSTICE II): examination of the solar stellar comparison technique. Sol Phys 230:295–324. doi:10.1007/s11207-005-8763-3 CrossRefGoogle Scholar
  19. Unruh YC, Solanki SK, Fligge M (1999) The spectral dependence of facular contrast and solar irradiance variations. Astron Astrophys 345:635–642Google Scholar
  20. Unruh YC, Krivova NA, Solanki SK, Harder JW, Kopp G (2008) Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astron Astrophys 486:311–323. doi:10.1051/0004-6361:20078421 CrossRefGoogle Scholar
  21. Wenzler T, Solanki SK, Krivova NA, Fröhlich C (2006) Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron Astrophys 460:583–595CrossRefGoogle Scholar
  22. Woods TN, Prinz DK, Rottman GJ et al (1996) Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J Geophys Res (Space Phys) 101(D6):9541–9570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yvonne C. Unruh
    • 1
  • Will T. Ball
    • 1
  • Natalie A. Krivova
    • 2
  1. 1.Astrophysics Group, Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Max-Planck Institut für SonnensystemforschungKatlenburg-LindauGermany

Personalised recommendations