Surveys in Geophysics

, Volume 33, Issue 5, pp 1107–1131 | Cite as

Analysis of the Characteristics of Low-Latitude GPS Amplitude Scintillation Measured During Solar Maximum Conditions and Implications for Receiver Performance

  • Alison de Oliveira MoraesEmail author
  • Fabiano da Silveira Rodrigues
  • Waldecir João Perrella
  • Eurico Rodrigues de Paula


Ionospheric scintillations are fluctuations in the phase and/or amplitude of trans-ionospheric radio signals caused by electron density irregularities in the ionosphere. A better understanding of the scintillation pattern is important to make a better assessment of GPS receiver performance, for instance. Additionally, scintillation can be used as a tool for remote sensing of ionospheric irregularities. Therefore, the study of ionospheric scintillation has both scientific as well as technological implications. In the past few years, there has been a significant advance in the methods for analysis of scintillation and in our understanding of the impact of scintillation on GPS receiver performance. In this work, we revisit some of the existing methods of analysis of scintillation, propose an alternative approach, and apply these techniques in a comprehensive study of the characteristics of amplitude scintillation. This comprehensive study made use of 32 days of high-rate (50 Hz) measurements made by a GPS-based scintillation monitor located in São José dos Campos, Brazil (23.2°S, 45.9°W, −17.5° dip latitude) near the Equatorial Anomaly during high solar flux conditions. The variability of the decorrelation time (τ0) of scintillation patterns is presented as a function of scintillation severity index (S 4). We found that the values of τ0 tend to decrease with the increase of S 4, confirming the results of previous studies. In addition, we found that, at least for the measurements made during this campaign, averaged values of τ0 (for fixed S 4 index values) did not vary much as a function of local time. Our results also indicate a significant impact of τ0 in the GPS carrier loop performance for S 4 ≥ 0.7. An alternative way to compute the probability of cycle slip that takes into account the fading duration time is also presented. The results of this approach show a 38% probability of cycle slips during strong scintillation scenarios (S 4 close to 1 and τ0 near 0.2 s). Finally, we present results of an analysis of the individual amplitude fades observed in our set of measurements. This analysis suggests that users operating GPS receivers with C/N 0 thresholds around 30 dB-Hz and above can be affected significantly by low-latitude scintillation.


Ionosphere GPS Scintillation Receiver performance Solar maximum 



The authors are grateful to INPE technical staff for maintaining the continuous operation of the scintillation monitor in São José dos Campos. FSR would like to thank the support from NSF through Award AGS-1024849, which allowed this collaborative work with INPE and ITA. AOM wishes to thank the Brazilian Institute of Aeronautics and Space (IAE), where he works as a research engineer, for supporting his doctoral studies at ITA.


  1. Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70(4):360–378. doi: 10.1109/PROC.1982.12314
  2. Aarons J (1985) Construction of a model of equatorial scintillation intensity. Radio Sci 20(3):397–402. doi: 10.1029/RS020i003p00397 CrossRefGoogle Scholar
  3. Aarons J (1991) The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci 4:1131. doi: 10.1029/91RS00473 Google Scholar
  4. Aarons J, Mullen JP, Whitney HE, MacKenzie EM (1980) The dynamics of equatorial irregularity patch formation motion and decay. J Geophys Res 85(A1):139–149. doi: 10.1029/JA085iA01p00139 Google Scholar
  5. Aarons J, Whitney HE, MacKenzie E, Basu S (1981) Microwave equatorial scintillation intensity during solar maximum. Radio Sci 16(5):939–945. doi: 10.1029/RS016i005p00939 Google Scholar
  6. Abdu MA, Souza JR, Batista IS, Sobral JHA (2003) Equatorial spread F statistics and empirical representation for IRI: a regional model for the Brazilian longitude sector. Adv Space Res 31(3):703–716. doi: 10.1016/S0273-1177(03)00031-0
  7. Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navig 58:241–256. doi: 10.1017/S0373463305003218 Google Scholar
  8. Balan N, Bailey GJ (1995) The equatorial plasma fountain and its effects—possibility of an additional layer. J Geophys Res 100:21421–21432. doi: 10.1029/95JA01555 Google Scholar
  9. Balan N, Bailey GJ (1996) Modeling studies of equatorial plasma fountain and equatorial anomaly. Adv Space Res 18:107–116. doi: 10.1016/0273-1177(95)00848-9
  10. Basu S, Basu S, Aarons J, Maclure JP, Cousins MD (1978) On the coexistence of kilometer- and meter-scale irregularities in the nighttime equatorial F region. J Geophys Res 83(A9):4219–4226. doi: 10.1029/JA083iA09p04219 Google Scholar
  11. Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods. Radio Sci 23:363–378. doi: 10.1029/RS023i003p00363 Google Scholar
  12. Beach TL (1998) Global positioning system studies of equatorial scintillations. Ph.D. Thesis, Cornell University, 335pGoogle Scholar
  13. Beach TL, Kintner PM (2001) Development and use of a GPS ionospheric scintillation monitor. IEEE Trans Geosci Remote Sens 39:918–928. doi: 10.1109/36.921409 Google Scholar
  14. Beniguel Y, Forte B, Radicella SM, Strangeways HJ, Gherm VE, Zernov NN (2004) Scintillations effects on satellite to Earth links for telecommunication and navigation purposes. Ann Geophys 47:1179–1199. doi: Google Scholar
  15. Bilitza D (2003) International reference ionosphere 2000: examples of improvements and new features. Adv Space Res 31(#3):757–767. doi: 10.1016/S0273-1177(03)00020-6
  16. Bilitza D, Reinisch B (2008) International reference ionosphere 2007: improvements and new parameters. J Adv Space Res 42(4):599–609. doi: 10.1016/j.asr.2007.07.048 CrossRefGoogle Scholar
  17. Bilitza D, Rawer K, Bossy L, Gulyaeva T (1993) International reference ionosphere—past, present, future: I. Electron density. Adv Space Res 13(#3):3–13. doi: 10.1016/0273-1177(93)90240-C Google Scholar
  18. Bishop G, Howell D, Coker C, Mazzella A, Jacobs D, Fremouw E, Secan J, Rahn B, Curtis C, Quinn J, Groves K, Basu S, Smitham M (1998) Test bed for evaluation of GPS receivers’ performance in ionospheric scintillation–a progress report. In: Proceedings of ION GPS 1998. Institute of Navigation, Long BeachGoogle Scholar
  19. Briggs BH, Parkin IA (1963) On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25:339–366. doi: 10.1016/0021-9169(63)90150-8 Google Scholar
  20. Carrano CS, Groves KM (2010) Temporal decorrelation of GPS satellite signals due to multiple scattering from ionospheric irregularities. In: Proceedings of the 2010 Institute of Navigation ION GNSS meetingGoogle Scholar
  21. Conker RS, El-Arini MB, Hegarty CJ, Hsiao T (2003) Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci 38:23. doi: 10.1029/2000RS002604
  22. Davies K (1990) Ionospheric radio. IEE Electromagnetic Waves Series 31Google Scholar
  23. De Paula ER, Rodrigues FS, Iyer KN, Kantor IJ, Abdu MA, Kintner PM, Ledvina BM, Kil H (2003) Equatorial anomaly effects on GPS scintillations in Brazil. Adv Space Res 31(3):749–754. doi: 10.1016/S0273-1177(03)00048-6 Google Scholar
  24. de Rezende LFC, Paula ER, Kantor IJ, Kintner PM (2007) Mapping and survey of plasma bubbles over Brazilian territory. J Navig 60:69–81. doi: 10.1017/S0373463307004006 Google Scholar
  25. Dubey S, Wahi R, Gwal AK (2006) Ionospheric effects on GPS positioning. Adv Space Res 38(11):2478–2484. doi: 10.1016/j.asr.2005.07.030 Google Scholar
  26. Forte B (2005) Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Solar Terr Phys 67(12):1100–1109. doi: 10.1016/j.jastp.2005.01.011 Google Scholar
  27. Forte B, Radicella SM (2002) Problems in data treatment for ionospheric scintillation measurements. Radio Sci 37(6):5. doi: 10.1029/2001RS002508 Google Scholar
  28. Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (1978) Early results from the DNA Wideband satellite experiment—complex-signal scintillation. Radio Sci 13:167–187. doi: 10.1029/RS013i001p00167 Google Scholar
  29. Fremouw EJ, Livingston RC, Miller DA (1980) On the statistics of scintillating signals. J Atmos Terr Phys 42:717–731. doi: 10.1016/0021-9169(80)90055-0 Google Scholar
  30. Ganguly S, Jovancevic A, Brown A, Kirchner M, Zigic S, Beach T, Groves KM (2004) Ionospheric scintillation monitoring and mitigation using a software GPS receiver. Radio Sci 39:9. doi: 10.1029/2002RS002812
  31. Groves KM, Basu S, Quinn JM, Pedersen TR, Falinski K, Brown A, Silva R, Ning P (2000) A comparison of GPS performance in a scintillating environment at Ascension Island. In: Proceedings of ION GPS 2000. Institute of NavigationGoogle Scholar
  32. Hegarty C, El-Arini MB, Kim T, Ericson S (2001) Scintillation modeling for GPS-Wide area augmentation system receivers. Radio Sci 36:1221–1231. doi: 10.1029/1999RS002425 Google Scholar
  33. Hinks JC, Humphreys TE, O’Hanlon B, Psiaki ML, Kintner PM Jr (2008) Evaluating GPS receiver robustness to ionospheric scintillation. In: Proceedings of the 21st international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, pp 309–320Google Scholar
  34. Holmes JK (1982) Coherent spread spectrum systems. Wiley, LondonGoogle Scholar
  35. Humphreys TE, Psiaki ML, Ledvina BM, Kintner PM Jr (2005) GPS carrier tracking loop performance in the presence of ionospheric scintillations. In: Proceedings of ION GNSS 2005. Long BeachGoogle Scholar
  36. Humphreys TE, Psiaki ML, Hinks JC, Kintner PM Jr (2009) Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J Sel Top Signal Process 3:707–715. doi: 10.1109/JSTSP.2009.2024130 Google Scholar
  37. Humphreys TE, Psiaki ML, Kintner PM Jr (2010) Modeling the effects of ionospheric scintillation on GPS carrier phase tracking. IEEE Trans Aerosp Electron Syst 46:1624–1637. doi: 10.1109/TAES.2010.5595583 Google Scholar
  38. Kelley MC (1989) The Earth’s ionosphere: plasma physics and electrodynamics. International Geophysics Series, vol 43. Academic Press, San DiegoGoogle Scholar
  39. Kintner PM, Kil H, Beach TL, de Paula ER (2001) Fading timescales associated with GPS signals and potential consequences. Radio Sci 36:731–743. doi: 10.1029/1999RS002310 CrossRefGoogle Scholar
  40. Kintner PM, Ledvina BM, de Paula ER, Kantor IJ (2004) Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations. Radio Sci 39:RS2012. doi: 10.1029/2003RS002878 CrossRefGoogle Scholar
  41. Kintner PM, Ledvina BM, Paula ER (2005) An amplitude scintillation test pattern standard for evaluating GPS receiver performance. Space Weather 3:6. doi: 10.1029/2003SW000025
  42. Kintner PM, Ledvina BM, de Paula ER (2007) GPS and ionospheric scintillations. Space Weather 5:S09003. doi: 10.1029/2006SW000260 CrossRefGoogle Scholar
  43. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23:325–331. doi: 10.1109/TAES.1987.310829 Google Scholar
  44. Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ Jr (eds) The global positioning system: theory and applications, chap 12. American Institute of Aeronautics and Astronautics, Inc., 370 L’Enfant Promenade, SW, WashingtonGoogle Scholar
  45. Klobuchar JA, Anderson DN, Doherty PH (1991) Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci 26(4):1025–1047. doi: 10.1029/91RS00799 Google Scholar
  46. Knight M, Finn A (1998) The effect of ionospheric scintillation on GPS. In: Proceedings of ION GPS 1998. Institute of Navigation, NashvilleGoogle Scholar
  47. Knight M, Cervera M, Finn A (2000) A comparison of measured GPS performance with model based predictions in an equatorial scintillation environment. In: Proceedings of the IAIN world congress and the 56th annual meeting of The Institute of Navigation, San Diego, pp 588–601Google Scholar
  48. Martinis CR, Mendillo MJ, Aarons J (2005) Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. J Geophys Res 110:A07306. doi: 10.1029/2003JA010362 CrossRefGoogle Scholar
  49. Mason LJ (1987) Error probability evaluation for systems employing differential detection in a Rician fast fading environment and Gaussian noise. IEEE Trans Commun COM-35(1):39–46. doi: 10.1109/TCOM.1987.1096662 Google Scholar
  50. Morrissey TN, Shallberg KW, Van Dierendonck AJ, Nicholson MJ (2004) GPS receiver performance characterization under realistic ionospheric phase scintillation environments. Radio Sci 39:RS1S20. doi: 10.1029/2002RS002838 CrossRefGoogle Scholar
  51. Rodrigues FS, de Paula ER, Abdu MA, Jardim AC, Iyer KN, Kintner PM, Hysell DL (2004) Equatorial spread F irregularity characteristics over São Luís, Brazil using VHF radar and GPS scintillation techniques. Radio Sci 39:RS1S31. doi: 10.1029/2002RS002826 CrossRefGoogle Scholar
  52. Schunk RW, Nagy AF (2000) Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Seo J, Walter T, Chiou TY, Enge P (2009) Characteristics of deep GPS signal fading due to ionospheric scintillation for aviation receiver design. Radio Sci 44:10. doi: 10.1029/2008RS004077
  54. Seo J, Walter T, Enge P (2011) Availability impact on GPS aviation due to strong ionospheric scintillation. IEEE Trans Aerosp Electron Syst 47(3):1963–1973. doi: 10.1109/TAES.2011.5937276 CrossRefGoogle Scholar
  55. Simon MK, Alouini M (2006) Digital communications over fading channels. Wiley, New YorkGoogle Scholar
  56. So H, Choi S, Jeon S, Kee C (2009) On-line detection of tracking loss in aviation GPS receivers using frequency-lock loops. J Navig 62:263–281. doi: 10.1017/S0373463308005171 Google Scholar
  57. Sobral JHA, Abdu MA, Takahashi H, Taylor MJ, de Paula ER, Zamlutti CJ, Aquino MG, Borba GL (2002) Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630 nm airglow observations. J Atmos Sol Terr Phys 64(12–14):1517–1524. doi: 10.1016/S1364-6826(02)00089-5 CrossRefGoogle Scholar
  58. Van Dierendonck AJ, Klobuchar JA, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th international technical meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, pp 1333–1342Google Scholar
  59. Whalen JA (2009) The linear dependence of GHz scintillation on electron density observed in the equatorial anomaly. Ann Geophys 27:1755–1761. doi: 10.5194/angeo-27-1755-2009 Google Scholar
  60. Yang L, Elmas Z, Hill C, Aquino M, Moore T (2011) An innovative approach for atmospheric error mitigation using new GNSS signals. J Navig 64:S211–S232. doi: 10.1017/S0373463311000373 CrossRefGoogle Scholar
  61. Yeh KC, Liu CH (1982) Radio wave scintillation in the ionosphere. Proc IEEE 70(4):324–360. doi: 10.1109/PROC.1982.12313 Google Scholar
  62. Zhang L, Morton YT (2009) Tracking GPS signals under ionosphere scintillation conditions In: Proceedings of the 22nd international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, pp 227–234Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alison de Oliveira Moraes
    • 1
    Email author
  • Fabiano da Silveira Rodrigues
    • 2
  • Waldecir João Perrella
    • 1
  • Eurico Rodrigues de Paula
    • 3
  1. 1.Instituto Tecnológico de Aeronáutica (ITA)São José dos CamposBrazil
  2. 2.Atmospheric & Space Technology Research Associates (ASTRA)BoulderUSA
  3. 3.Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil

Personalised recommendations