Surveys in Geophysics

, Volume 33, Issue 3–4, pp 585–608 | Cite as

Energetic Constraints on Precipitation Under Climate Change

  • Paul A. O’GormanEmail author
  • Richard P. Allan
  • Michael P. Byrne
  • Michael Previdi


Energetic constraints on precipitation are useful for understanding the response of the hydrological cycle to ongoing climate change, its response to possible geoengineering schemes, and the limits on precipitation in very warm climates of the past. Much recent progress has been made in quantifying the different forcings and feedbacks on precipitation and in understanding how the transient responses of precipitation and temperature might differ qualitatively. Here, we introduce the basic ideas and review recent progress. We also examine the extent to which energetic constraints on precipitation may be viewed as radiative constraints and the extent to which they are confirmed by available observations. Challenges remain, including the need to better demonstrate the link between energetics and precipitation in observations and to better understand energetic constraints on precipitation at sub-global length scales.


Precipitation Global change Energetics 



M. Byrne is supported through the MIT Joint Program on the Science and Policy of Global Change. R. Allan is funded through the National Environment Research Council PREPARE project (NE/G015708/1) and National Centre for Atmospheric Sciences. We thank the American Meteorological Society (AMS) and T. Andrews for reproduction of Fig. 3, the American Geophysical Union (AGU) and L. Cao for reproduction of Fig. 6, and C. J. Muller for Fig. 7. The SSM/I data were extracted from Remote Sensing Systems, the GPCP data from the NASA Goddard Space Flight Center, the HadCRUH and HadCRUT data from and ERA Interim data from We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model data set. Support of this data set is provided by the Office of Science, US Department of Energy.


  1. Adler RF, Kidd C, Petty G, Morissey M, Goodman HM (2001) Intercomparison of global precipitation products: the third precipitation intercomparison project (PIP-3). Bull Am Meteorol Soc 82:1377–1396CrossRefGoogle Scholar
  2. Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113:D22,104CrossRefGoogle Scholar
  3. Allan RP (2006) Variability in clear-sky longwave radiative cooling of the atmosphere. J Geophys Res 111:D22, 105CrossRefGoogle Scholar
  4. Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Clim 22:3127–3145CrossRefGoogle Scholar
  5. Allan RP (2011) Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol Appl 18:324–333Google Scholar
  6. Allan RP, Slingo A, Ramaswamy V (2002) Analysis of moisture variability in the European Centre for medium-range weather forecasts 15-year reanalysis over the tropical oceans. J Geophys Res 107:4230CrossRefGoogle Scholar
  7. Allan RP, Soden BJ, John VO, Ingram WI, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205CrossRefGoogle Scholar
  8. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  9. Andrews T, Forster PM (2010) The transient response of global-mean precipitation to increasing carbon dioxide levels. Environ Res Lett 5:025212CrossRefGoogle Scholar
  10. Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22:2557–2570CrossRefGoogle Scholar
  11. Andrews T, Forster PM, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37:L14701CrossRefGoogle Scholar
  12. Arkin PA, Smith TM, Sapiano MRP, Janowiak J (2010) The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ Res Lett 5:035201CrossRefGoogle Scholar
  13. Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Nat Acad Sci 105:7664–7669CrossRefGoogle Scholar
  14. Bala G, Caldeira K, Nemani R (2010) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35:423–434CrossRefGoogle Scholar
  15. Ban-Weiss GA, Cao L, Bala G, Caldeira K (2011) Dependence of climate forcing and response on the altitude of black carbon aerosols. Clim Dyn doi: 10.1007/s00382-011-1052-y
  16. Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111CrossRefGoogle Scholar
  17. Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239CrossRefGoogle Scholar
  18. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes?. J Clim 19:3445–3482CrossRefGoogle Scholar
  19. Cao L, Bala G, Caldeira K (2011) Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?. Geophys Res Lett 38:L06703CrossRefGoogle Scholar
  20. Chou C, Chen CA (2010) Depth of convection and the weakening of tropical circulation in global warming. J Clim 23:3019–3030CrossRefGoogle Scholar
  21. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701CrossRefGoogle Scholar
  22. Chou C, Tu JY, Tan PH (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708CrossRefGoogle Scholar
  23. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “Rich-Get-Richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005CrossRefGoogle Scholar
  24. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  25. Durre I, Williams CN Jr, Yin X, Vose RS (2009) Radiosonde-based trends in precipitable water over the Northern Hemisphere: an update. J Geophys Res 114:D05112CrossRefGoogle Scholar
  26. Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701CrossRefGoogle Scholar
  27. Frieler K, Meinshausen M, von Deimling TS, Andrews T, Forster P (2011) Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys Res Lett 38:L04702CrossRefGoogle Scholar
  28. Frierson DMW (2007) The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J Atmos Sci 64:1959–1976CrossRefGoogle Scholar
  29. Frierson DMW, Held IM, Zurita-Gotor P (2006) A gray-radiation aquaplanet moist GCM. Part I: static stability and eddy scale. J Atmos Sci 63:2548–2566CrossRefGoogle Scholar
  30. Gastineau G, Soden BJ (2011) Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys Res Lett 38:L09706CrossRefGoogle Scholar
  31. Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J Clim 20:4033–4046CrossRefGoogle Scholar
  32. Hall A, Manabe S (2000) Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle. J Geophys Res 105:6935–6944CrossRefGoogle Scholar
  33. Harries JE, Futyan JM (2006) On the stability of the Earth’s radiative energy balance: response to the Mt. Pinatubo eruption. Geophys Res Lett 33:L23814CrossRefGoogle Scholar
  34. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  35. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808CrossRefGoogle Scholar
  36. John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical ocean warming. Geophys Res Lett 36:L14702CrossRefGoogle Scholar
  37. Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget?. J Clim 22:499–517CrossRefGoogle Scholar
  38. Lambert FH, Faull NE (2007) Tropospheric adjustment: the response of two general circulation models to a change in insolation. Geophys Res Lett 34:L03701CrossRefGoogle Scholar
  39. Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706CrossRefGoogle Scholar
  40. Lambert FH, Stine AR, Krakauer NY, Chiang JCH (2008) How much will precipitation increase with global warming?. Eos Trans AGU 89:193–194CrossRefGoogle Scholar
  41. Le Hir G, Donnadieu Y, Goddéris Y, Pierrehumbert RT, Halverson GP, Macouin M, Nédélec A, Ramstein G (2009) The snowball Earth aftermath: exploring the limits of continental weathering processes. Earth Planet Sci Lett 277:453–463CrossRefGoogle Scholar
  42. Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Nat Acad Sci 106:20,572–20,577CrossRefGoogle Scholar
  43. Li G, Ren B, Yang C, Zheng J (2011) Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006. J Geophys Res 116:D10115CrossRefGoogle Scholar
  44. Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming?. J Clim 22:3156–3166CrossRefGoogle Scholar
  45. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22:748–766CrossRefGoogle Scholar
  46. Lorenz DJ, DeWeaver ET, Vimont DJ (2010) Evaporation change and global warming: the role of net radiation and relative humidity. J Geophys Res 115:D20118CrossRefGoogle Scholar
  47. Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381CrossRefGoogle Scholar
  48. Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37:L13701CrossRefGoogle Scholar
  49. Mishchenko MI, Geogdzhayev IV, Rossow WB, Cairns B, Carlson BE, Lacis AA, Liu L, Travis LD (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543CrossRefGoogle Scholar
  50. Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322CrossRefGoogle Scholar
  51. Muller CJ, O’Gorman PA (2011) An energetic perspective on the regional response of precipitation to climate change. Nat Clim Change 1:266–271CrossRefGoogle Scholar
  52. Muller CJ, O’Gorman PA, Back LE (2011) Intensification of precipitation extremes with warming in a cloud resolving model. J Clim 24:2784–2800CrossRefGoogle Scholar
  53. O’Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate-change simulations?. Environ Res Lett 5:025207CrossRefGoogle Scholar
  54. O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815–3832CrossRefGoogle Scholar
  55. O’Gorman PA, Schneider T (2009a) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106:14,773–14,777Google Scholar
  56. O’Gorman PA, Schneider T (2009b) Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J Clim 22:5676–5685CrossRefGoogle Scholar
  57. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  58. Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363CrossRefGoogle Scholar
  59. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  60. Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806CrossRefGoogle Scholar
  61. Pierrehumbert RT (1999) Subtropical water vapor as a mediator of rapid global climate change. In: Clarks PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales. Geophys. Monogr. Ser., vol 112, American Geophysical Union, Washington, p 339Google Scholar
  62. Pierrehumbert RT (2002) The hydrologic cycle in deep-time climate problems. Nature 419:191–198CrossRefGoogle Scholar
  63. Power SB, Smith IN (2007) Weakening of the Walker circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed?. Geophys Res Lett 34:L18702CrossRefGoogle Scholar
  64. Previdi M (2010) Radiative feedbacks on global precipitation. Environ Res Lett 5:025211CrossRefGoogle Scholar
  65. Previdi M, Liepert BG (2008) Interdecadal variability of rainfall on a warming planet. Eos Trans AGU 89:193–195CrossRefGoogle Scholar
  66. Quartly GD, Kyte EA, Srokosz MA, Tsimplis MN (2007) An intercomparison of global oceanic precipitation climatologies. J Geophys Res 112:D10121CrossRefGoogle Scholar
  67. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707CrossRefGoogle Scholar
  68. Ramanathan V (1981) The role of ocean-atmosphere interactions in the CO2 climate problem. J Atmos Sci 38:918–930CrossRefGoogle Scholar
  69. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  70. Richter I, Xie SP (2008) Muted precipitation increase in global warming simulations: A surface evaporation perspective. J Geophys Res 113:D24118CrossRefGoogle Scholar
  71. Romps DM (2011) Response of tropical precipitation to global warming. J Atmos Sci 68:123–138CrossRefGoogle Scholar
  72. Santer BD, Mears C, Wentz FJ, Taylor KE, Gleckler PJ, Wigley TML, Barnett TP, Boyle JS, Brüggemann W, Gillett NP, Klein SA, Meehl GA, Nozawa T, Pierce DW, Stott PA, Washington WM, Wehner MF (2007) Identification of human-induced changes in atmospheric moisture content. Proc Natl Acad Sci 104:15,248–15,253CrossRefGoogle Scholar
  73. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001CrossRefGoogle Scholar
  74. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668CrossRefGoogle Scholar
  75. Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res 115:D09104CrossRefGoogle Scholar
  76. Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520CrossRefGoogle Scholar
  77. Sohn BJ (1999) Cloud-induced infrared radiative heating and its implications for large-scale tropical circulations. J Atmos Sci 56:2657–2672CrossRefGoogle Scholar
  78. Sohn BJ, Park SC (2010) Strengthened tropical circulations in past three decades inferred from water vapor transport. J Geophys Res 115:D15112CrossRefGoogle Scholar
  79. Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) 24.5-year SRB data set released. GEWEX News 21:10–12Google Scholar
  80. Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155CrossRefGoogle Scholar
  81. Stephens GL, Hu Y (2010) Are climate-related changes to the character of global-mean precipitation predictable?. Environ Res Lett 5:025209CrossRefGoogle Scholar
  82. Stevens B, Schwartz SE (2011) Observing and modeling Earth’s energy flows. Surv Geophys (submitted)Google Scholar
  83. Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain?. J Clim 20:4801–4818CrossRefGoogle Scholar
  84. Takahashi K (2009a) Radiative constraints on the hydrological cycle in an idealized radiative-convective equilibrium model. J Atmos Sci 66:77–91CrossRefGoogle Scholar
  85. Takahashi K (2009b) The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J Clim 22:5667–5675CrossRefGoogle Scholar
  86. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339CrossRefGoogle Scholar
  87. Trenberth KE (2002) Changes in tropical clouds and radiation. Science 296:2095aCrossRefGoogle Scholar
  88. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138CrossRefGoogle Scholar
  89. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703CrossRefGoogle Scholar
  90. Trenberth KE, Stepaniak DP, Hurrell JW, Fiorino M (2001) Quality of reanalyses in the tropics. J Clim 14:1499–1510CrossRefGoogle Scholar
  91. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  92. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323CrossRefGoogle Scholar
  93. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  94. Wang JJ, Adler RF, Gu G (2008) Tropical rainfall-surface temperature relations using Tropical Rainfall Measuring Mission precipitation data. J Geophys Res 113:D18115CrossRefGoogle Scholar
  95. Wentz FJ, Schabel M (2000) Precise climate monitoring using complementary satellite data sets. Nature 403:414–416CrossRefGoogle Scholar
  96. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring?. Science 317:233–235CrossRefGoogle Scholar
  97. Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang S, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–844CrossRefGoogle Scholar
  98. Wild M (1999) Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J Geophys Res 104:27,361–27,371CrossRefGoogle Scholar
  99. Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett 5:025003CrossRefGoogle Scholar
  100. Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850CrossRefGoogle Scholar
  101. Wild M, Grieser J, Schär C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706CrossRefGoogle Scholar
  102. Willett KM, Jones PD, Gillett NP, Thorne PW (2008) Recent changes in surface humidity: development of the HadCRUH dataset. J Clim 21:5364–5383CrossRefGoogle Scholar
  103. Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the Earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J Clim 19:4028–4040CrossRefGoogle Scholar
  104. Wu P, Wood R, Ridley J, Lowe J (2010) Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys Res Lett 37:L12705CrossRefGoogle Scholar
  105. Yang F, Kumar A, Schlesinger ME, Wang W (2003) Intensity of hydrological cycles in warmer climates. J Clim 16:2419–2423CrossRefGoogle Scholar
  106. Yang H, Tung KK (1998) Water vapor, surface temperature, and the greenhouse effect—a statistical analysis of tropical-mean data. J Clim 11:2686–2697CrossRefGoogle Scholar
  107. Yu L (2007) Global variations in oceanic evaporation (1958–2005): the role of the changing wind speed. J Clim 20:5376–5390CrossRefGoogle Scholar
  108. Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res 116:D18111CrossRefGoogle Scholar
  109. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465CrossRefGoogle Scholar
  110. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105CrossRefGoogle Scholar
  111. Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37:L06704CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul A. O’Gorman
    • 1
    Email author
  • Richard P. Allan
    • 2
  • Michael P. Byrne
    • 1
  • Michael Previdi
    • 3
  1. 1.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Meteorology, National Centre for Atmospheric ScienceUniversity of ReadingReadingUK
  3. 3.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations