Surveys in Geophysics

, Volume 33, Issue 2, pp 275–292 | Cite as

Two-Dimensional Geothermal Modelling Along the Central Pontides Magmatic Arc: Implications for the Geodynamic Evolution of Northern Turkey



The Pontides, which can be divided tectonically into three main segments as Eastern, Central, and Western Pontides, is one of the most complex geodynamic settings within the Alpine belt. The Central Pontides, where the Eastern and Western Pontides met and formed a tectonic knot, represent an amalgamated tectonic mosaic consisting of remnants of oceanic, continental, and island arc segments. Subduction polarity, which is responsible for the formation of the Pontides, is still under debate because of limited geological, geophysical, and geochemical data. Two-dimensional (2-D) thermal modelling studies along the Central Pontides magmatic arc (Northern Turkey), Sakarya and Kırşehir continents are investigated in order to delineate the crustal thermal structure and subduction polarity. The obtained numerical results indicate that arc and back-arc regions are hot because of the cooling effects of a subducting plate. Moho temperatures in the investigated region are found between 992°C in the south (back-arc) and 415°C in the north (arc). Moreover, mantle heat flow values vary from 57.2 mWm−2 in the south (back-arc) to 34.7 mWm−2 in the north (arc). It is shown from this study that the Eurasia plate had moved from north to south under the Anatolia plate along the south Black Sea coast.


Heat flow Thermal conductivity Spectral analysis Central Pontides 



I would like to thank the General Directorate of the Mineral Research and Exploration (MTA) of Turkey for the provision of gravity data. I express my thanks to two anonymous referees for their thorough, critical and constructive comments. The author is grateful to Michael J. Rycroft for his editorial advice which improved the quality of this paper.


  1. Adamia S, Lordkipanidze MB, Zakariadze GS (1977) Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics 40:183–189CrossRefGoogle Scholar
  2. Adamia SA, Chkhotua T, Kekelia M, Lordkipanidze M, Shavisvili I, Zahariadze F (1981) Tectonics of the caucasus and adjoining regions: implications for the evolution of the Tethys Ocean. J Struct Geol 3:437–447CrossRefGoogle Scholar
  3. Ateş A, Bilim F, Büyüksaraç A (2005) Curie point depth investigation of Central Anatolian Turkey. Pure Appl Geophys 162:357–371CrossRefGoogle Scholar
  4. Aydın I, Karat HI, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Int 162:633–640CrossRefGoogle Scholar
  5. Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure Appl Geophys 158:799–812CrossRefGoogle Scholar
  6. Bansal AR, Dimri VP, Sagar GV (2006) Depth estimation from gravity data using the maximum entropy method (MEM) and the multi taper method (MTM). Pure Appl Geophys 163:1417–1434CrossRefGoogle Scholar
  7. Bektaş Ö (1986) Paleostress trajectories and polyphase rifting in arc-back arc of Eastern Pontides, vol 103/104. Mineral Research and Exploration Institute (MTA) Bulletin, Ankara, pp 1–15Google Scholar
  8. Bektaş Ö, Van A, Boynukalın S (1987) Jurassic volcanism and its geotectonics in the eastern Pontides (NE Turkey). Geol Bull Turk 30:9–18Google Scholar
  9. Bektaş Ö, Pelin S, Korkmaz S (1984) Mantle uprising and polygenetic ophiolite fact in the back-arc basin of the Eastern Pontides. In: TJK Ketin symposium, Ankara, Turkey, pp 175–188Google Scholar
  10. Bektaş Ö, Şen C, Atıcı Y, Köprübaşı N (1999) Migration of the upper cretaceous subduction-related volcanism towards the back-arc basin of the Eastern Pontide magmatic arc (NE Turkey). Geol J 34:95–106CrossRefGoogle Scholar
  11. Bektaş Ö, Ravat D, Büyüksaraç A, Bilim F, Ateş A (2007) Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl Geophys 164:975–998CrossRefGoogle Scholar
  12. Bhattacharyya BK (1966) Continuous spectrum of the total magnetic data due to a rectangular prismatic body. Geophysics 31:97–121CrossRefGoogle Scholar
  13. Bhattacharyya BK, Leu LK (1975) Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics 40:993–1013CrossRefGoogle Scholar
  14. Bhattacharyya BK, Leu LK (1977) Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics 42:41–50CrossRefGoogle Scholar
  15. Bilim F (2007) Investigations into the tectonic lineaments and thermal structure of Kutahya–Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data. Phys Earth Planet Interiors 165:135–146CrossRefGoogle Scholar
  16. Birch F, Roy RF, Decker ER (1968) Heat flow and thermal history in New England and New York. In: Zen E, White WS, Hadley JB, Thompson JB Jr (eds) Studies of appalachian geology: northern and maritime. Interscience, New York, pp 437–451Google Scholar
  17. Bozkurt E (2001) Neotectonics of Turkey–a synthesis. Geodinamica Acta 14:3–30CrossRefGoogle Scholar
  18. Cermak V, Bodri L (1986) Tow-dimensional temperature modeling along five east-European geotraverses. J Geodyn 5:133–163CrossRefGoogle Scholar
  19. Cermak V, Rybach L (1989) Vertical distribution of heat production in the continental crust. Tectonophysics 159:217–230CrossRefGoogle Scholar
  20. Cermak V, Bodri L, Rybach L (1991) Radioactive heat production in the continental crust and its depth dependence. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 23–69Google Scholar
  21. Channell JET, Tüysüz O, Bektaş O, Şengör AMC (1996) Jurassic-Cretaceous paleomagnetism and paleogeography of the Pontides (Turkey). Tectonics 115:201–212CrossRefGoogle Scholar
  22. Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust. In: Fountain DM, Arculus R, Kay RW (eds) continental lower crust. Elsevier, Amsterdam, pp 179–198Google Scholar
  23. Chavez RE, Lazaro-Mancilla O, Campos-Enriquez JO, Flores-Marquez EL (1999) Basement topography of the Mexicali valley from spectral and ideal body analysis of gravity data. J S Am Earth Sci 12:579–587CrossRefGoogle Scholar
  24. Chorowicz J, Dhont D, Adıyaman Ö (1998) Black sea Pontide relationship: interpretation in terms of subduction. In: Third international Turkish geology symposium, Abstracts, Ankara, Turkey, METU, p 258Google Scholar
  25. Çinku MC, Ustaömer T, Hirt AM, Hisarli ZM, Heller F, Orbay N (2010) Southward migration of arc magmatism during latest Cretaceous associated with slab steepening, East Pontides, N Turkey: new paleomagnetic data from the Amasya region. Phys Earth Planet Interiors 182:18–29CrossRefGoogle Scholar
  26. Correia A, Jones FW (1995) A magnetotelluric survey in a reported geothermal area in southern Portugal. Proc World Geotherm Congr 2:927–931Google Scholar
  27. Correia A, Ramalho EC (1999) One-dimensional thermal models constrained by seismic velocities and surface radiogenic heat production for two main geotectonic units in southern Portugal. Tectonophysics 306:261–268CrossRefGoogle Scholar
  28. Curtis CE, Jain S (1975) Determination of volcanic thickness and underlying structures from aeromagnetic maps of the Silet area of Algeria. Geophysics 40:79–90CrossRefGoogle Scholar
  29. Dewey JF, Pitman WC, Ryan WBF, Bonin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  30. Dimitriadis K, Tselentis GA, Thanassoulas K (1987) A basic program for 2-D spectral analysis of gravity data and source depth determination. Comput Geosci 13:549–560CrossRefGoogle Scholar
  31. Dolmaz MN, Hisarlı ZM, Ustaömer T, Orbay N (2005) Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure ApplGeophys 162:571–590Google Scholar
  32. Eyüboğlu Y (2010) Late cretaceous high-K volcanism in the eastern pontide orogenic belt: implications for the geodynamic evolution of NE Turkey. Int Geol Rev 52:142–186CrossRefGoogle Scholar
  33. Eyüboğlu Y, Bektaş O, Şeren A, Maden N, Özer R, Jacoby WR (2006) Three-directional extensional deformation and formation of the liassic rift basins in the Eastern Pontides (NE Turkey). Geol Carpathica 57:337–346Google Scholar
  34. Eyüboğlu Y, Chung SL, Santosh M, Dudas FO, Akaryali E (2010) Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res 19:413–429CrossRefGoogle Scholar
  35. Förster A, Förster HJ (2000) Crustal composition and mantle heat flow: implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany). J Geophys Res 105(B12):27.917–27.938CrossRefGoogle Scholar
  36. Gomez-Ortiz D, Tejero-Lopez R, Babin-Vich R, Rivas-Ponce A (2005) Crustal density structure in the Spanish central system derived from gravity data analysis (Central Spain). Tectonophysics 403:131–149CrossRefGoogle Scholar
  37. He L, Hu S, Yang W, Wang J (2009) Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt. Earth Planet Sci Lett 277:525–538CrossRefGoogle Scholar
  38. Hisarlı ZM (2011) New paleomagnetic constraints on the late cretaceous and early Cenozoic tectonic history of the Eastern Pontides. J Geodyn. doi: 10.1016/j.jog.2010.12.004
  39. Hofstetter A, Dorbath C, Rybakov M, Goldshmidt V (2000) Crustal and upper mantle structure across the Dead Sea rift and Israel from teleseismic P-wave tomography and gravity data. Tectonophysics 327:37–59CrossRefGoogle Scholar
  40. İlkışık OM (1992) Silica heat flow estimates and lithospheric temperature in Anatolia. In: Proceedings, XI. congress of world hydrothermal organization, İstanbul, Mayıs, pp 92–104Google Scholar
  41. İlkışık OM (1995) Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 244:175–184CrossRefGoogle Scholar
  42. İlkışık OM, Gürer A, Tokgöz T, Kaya C (1997) Geoelectromagnetic and geothermic investigations in Ihlara Valley Geothermal Field. J Volcanol Geotherm Res 78:297–308CrossRefGoogle Scholar
  43. Jokinen J, Kukkonen IT (1999a) Random modelling of the lithospheric thermal regime: forward simulations applied to uncertainty analysis. Tectonophysics 306:277–292CrossRefGoogle Scholar
  44. Jokinen J, Kukkonen IT (1999b) Inverse simulation of the lithospheric thermal regime using the Monte Carlo method. Tectonophysics 306:293–310CrossRefGoogle Scholar
  45. Kukkonen IT, Jokinen J, Seipold U (1999) Temperature and pressure dependencies of thermal transport properties of rocks: implications for uncertainties in thermal lithosphere models and new laboratory measurements of high-grade rocks in the central Fennoscandian shield. Surv Geophys 20:33–59CrossRefGoogle Scholar
  46. Kumar PS, Menon R, Reddy GK (2007) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254:39–54CrossRefGoogle Scholar
  47. Lachenbruch AH (1970) Crustal temperature and heat production: implication of the linear heat flow relationship. J Geophys Res 75:3291–3300CrossRefGoogle Scholar
  48. Lauer JP (1981) Orgine meridionale des Pontides d’apres de nouevaux resultats paleomagnetiques obtenus en Turqie. Bulletin de la Societe Geologique de France 23:619–624Google Scholar
  49. Lefort JP, Agarwal BNP (2002) Topography of the Moho undulations in France from gravity data: their age and origin. Tectonophysics 350:193–213CrossRefGoogle Scholar
  50. Maden N (2009) Crustal thermal properties deduced from spectral analysis of magnetic data in Central Pontides (Turkey). Turk J Earth Sci 18:383–392Google Scholar
  51. Maden N (2010) Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central TURKEY). Pure Appl Geophys 167:349–358CrossRefGoogle Scholar
  52. Maden N (2011) One dimensional thermal modeling of the Eastern Pontide Orogenic Belt (NE TURKEY). Pure Appl Geophys. doi: 10.1007/s00024-011-0296-0
  53. Maden N, Gelişli K, Bektaş O, Eyüboğlu Y (2009a) Two-and-three-dimensional crust topography of the Eastern Pontides (NE TURKEY). Turk J Earth Sci 18:225–238Google Scholar
  54. Maden N, Gelişli K, Eyüboğlu Y, Bektaş O (2009b) Determination of tectonic and crustal structure of the Eastern Pontide Orogenic Belt (NE Turkey). Pure Appl Geophys 166:1987–2006CrossRefGoogle Scholar
  55. Mall DM, Sharma SR (2009) Tectonics and thermal structure of western Satpura, India. J Asian Earth Sci 34:450–457CrossRefGoogle Scholar
  56. Moisio K, Kaikkonen P (2006) Three-dimensional numerical thermal and rheological modelling in the central Fennoscandian Shield. J Geodyn 42:95–114CrossRefGoogle Scholar
  57. Morgan P, Sass JH (1984) Thermal regime of the continental lithosphere. J Geodyn 1:143–166CrossRefGoogle Scholar
  58. Nnange JM, Ngako V, Fairhead JD, Ebinger CJ (2000) Depths to density discontinuities beneath the Adamawa plateau region, Central Africa, from spectral analyses of new and existing gravity data. J Afr Earth Sc 30:887–901CrossRefGoogle Scholar
  59. Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The mediterranean basins: tertiary extension within the Alpine orogen, vol 156. Geological Society of London, Special Publication, London, pp 475–515Google Scholar
  60. Okay AI, Tüysüz O, Satır M, Altıner SÖ, Altıner D, Sherlock S, Eren RH (2006) Cretaceous and Triassic subduction-accretion, HP/LT metamorphism and continental growth in the central Pontides, Turkey. Geol Soc Am Bull 118:1247–1269CrossRefGoogle Scholar
  61. Pal PC, Khurana KK, Unnikrishna P (1979) Two examples of spectral approach to source depth determination in gravity and magnetics. Pure Appl Geophys 117:772–783CrossRefGoogle Scholar
  62. Pamukcu OA, Akcig Z, Demirbas S, Zor E (2007) Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure Appl Geophys 164:2345–2358CrossRefGoogle Scholar
  63. Pasquale V (1987) Possible thermal structure of the eastern part of the Central Alps. Nuovo Cimento 10C:129–141Google Scholar
  64. Perry FV, Valentine GA, Cogbill AH, Keating GN, Gaffney ES, Damjanac B (2006) Control of basaltic feeder dike orientation by fault capture near Yucca Mountain, USA, American Geophysical Union Fall Meeting, San Francisco, abstract V11B-0572Google Scholar
  65. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithosphere thickness. Tectonophysics 38:279–396CrossRefGoogle Scholar
  66. Poudjom Djomani YH, Diament M, Albouy Y (1992) Mechanical behaviour of the lithosphere beneath the Adamawa Uplift (Cameroon, West Africa) based on gravity data. J Afr Earth Sc 15:81–90CrossRefGoogle Scholar
  67. Rai SN, Thiagarajan S (2006) A tentative 2D thermal model of central India across the Narmada-Son Lineament (NSL). J Asian Earth Sci 28:363–371CrossRefGoogle Scholar
  68. Rangin C, Bader AG, Pascal G, Ecevitoğlu B, Görür N (2002) Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise). Mar Geol 182:265–278CrossRefGoogle Scholar
  69. Rao RUM, Verma RK, Gupta ML (1970) Heat flow at Dam and Mohapani, Satpura Gondwana basin India. Earth Planet Sci Lett 7:406–412CrossRefGoogle Scholar
  70. Rimi A (1999) Mantle heat flow and geotherms for the main geologic domains in Morocco. Int J Earth Sci 88:458–466CrossRefGoogle Scholar
  71. Rivero L, Pinto V, Casas A (2002) Moho depth structure of the eastern part of the Pyrenean belt derived from gravity data. J Geodyn 33:315–332CrossRefGoogle Scholar
  72. Sarıbudak M (1989) New results and a paleomagnetic overview of the Pontides in Northern Turkey. Geophys J Int 99:521–531CrossRefGoogle Scholar
  73. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  74. Sharma SR, Rao VK, Mall DM, Gowd TN (2005) Geothermal structure in a seismoactive region of Central India. Pure Appl Geophys 162:129–144CrossRefGoogle Scholar
  75. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302CrossRefGoogle Scholar
  76. Stüwe K (2007) Geodynamics of the lithosphere: an introduction, 2nd edn. Springer, Berlin, p 493Google Scholar
  77. Tezcan AK (1995) Geothermal explorations and heat flow in Turkey. In: Gupta ML, Yamano M (eds) Terrestrial heat flow and geothermal energy in Asia. Science Publishers, Lebanon, pp 23–42Google Scholar
  78. Tezcan AK, Turgay MI (1989) Heat flow map of Turkey. General Directorate of Mineral Research and Exploration (MTA), Department of Geophysics Research, Ankara (in Turkish, unpublished)Google Scholar
  79. Treitel S, Clement WG, Kaul RK (1971) The spectral determination of depths to buried magnetic basement rocks. Geophys J Roy Astron Soc 24:415–428CrossRefGoogle Scholar
  80. Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  81. Ustaömer T, Robertson AHF (1995) Palaeotethyan tectonic evolution of the north Tethyan margin in the Central Pontides, N Turkey. In: Erler A, Ercan T (eds) Proceedings of the international symposium on the geology of the Black Sea Region, Ankara, pp 23–42Google Scholar
  82. Ustaömer T, Robertson AHF (1997) Tectonic-sedimentary evolution of the North-Tethyan active margin in the Central Pontides of Northern Turkey. In: Robinson AG (ed) Regional and petroleum geology of the Black Sea Region. AAPG Memoir, vol 68. pp 245–290Google Scholar
  83. Van Der Voo R (1968) Jurassic, Cretaceous and Eocene pole positions from northeastern Turkey. Tectonophysics 6:251–269CrossRefGoogle Scholar
  84. Yılmaz Y, Tüysüz O, Yığıtbaş E, Can Genç Ş, Şengör AMC (1997) Geology and tectonic evolution of the Pontides, In: Robinson AG (ed) Regional and petroleum geology of the Black Sea and surrounding region: AAPG Memoir, vol 68, pp 183–226Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeophysicsGümüşhane UniversityGümüşhaneTurkey

Personalised recommendations