Surveys in Geophysics

, Volume 33, Issue 2, pp 243–273 | Cite as

Depth-Recursive Tomography of the Bohemian Massif at the CEL09 Transect—Part B: Interpretation



In the accompanying paper (Part A), depth-recursive tomography was applied to the CEL09 refraction data. A deblurred P-wave velocity image was obtained down to a depth of 20 km. This paper (Part B) is devoted to the interpretation of the upper- and middle-crustal structures of the Bohemian Massif imaged in the CEL09 section. Because of inherent ambiguity of the refraction method in imaging low-velocity zones, other well-known results based on other geophysical data sets are also used to independently verify the interpreted velocity features. Comparison with the density and velocity models previously obtained indicates that the presented P-wave velocity image has superior resolution revealing or verifying a number of geological features. The prominent lateral velocity changes encountered in the CEL09 pattern across the imaged crustal section were used to delineate the main terranes and deep regional fault zones such as the Krušné hory Fault, the SW continuation of the Litoměřice Fault Zone, the West and Central Bohemian Shear Zones, the Blanice-Rodl Fault, the Přibyslav-Vitis Fault and the Boskovice-Diendorf Fault. The 450-km-long CEL09 transect reveals seven major deeply rooted high-velocity (HV) anomalies identified as Variscan massifs intruded near or within these deep fault zones. They form buried ridges mostly parallel to the SW-NE trending Variscan strike. Their discovery allows new insights into a number of phenomena such as the West Bohemian earthquake swarms, the Saxothuringian paradox, the character of the Saxothuringian-Barrandian contact zone, the detachment surface due to the slab of the Saxothuringian crust subducting beneath the Teplá-Barrandian zone in the Devonian, the depth extent of the Mariánské-Lázně Complex (MLC) as an equivalent unit of the Zone Erbendorf-Vohenstrauss (ZEV), the subsidence of the Barrandian syncline, the root zones of the Central and South Bohemian Plutons, the accretionary wedge formed along the Moravo-Moldanubian suture and its link with the Gföhl terrane, the Carpathian foreland relief and the subsidence observed in the Vienna Basin.


Depth-recursive tomography on grid P-wave velocity image CEL09 refraction profile 9HR reflection profile Bohemian Massif Saxothuringian Mariánské Lázně Complex Zone Erbendorf-Vohnenstrauss Barrandian syncline Moldanubian plutonic province Moldanubian Moravo-Moldanubian suture Gföhl unit Vienna Basin Subsidence Subduction features in the P-wave velocity image Detachment surface Collisional mass transfer Variscan imprint on the Carpathian foreland 



This study was supported by Project LA08036 of Program INGO of the Ministry of Education of the Czech Republic. The author would like to thank Jan Švancara of the Institute of Physics of the Earth, Masaryk University, Brno; Stanislav Ulrych of the Institute of Geophysics, ASCR, Prague; Bedřich Mlčoch, Stanislav Vrána and Veronika Štědrá of the Czech Geological Survey, Prague, for their kind permission to use their original figures and for valuable discussions.


  1. Adámek J (2005) The Jurassic floor of the Bohemian Massif in Moravia—geology and paleogeography. Bull Geosci 4:291–305Google Scholar
  2. Aki K, Richards PG (1980) Quantitative seismology, vol 2. W. H. Freeman and Company, San FranciscoGoogle Scholar
  3. Arzmüller G, Buchta Š, Ralbovský E, Wessely G (2006) The Vienna Basin. In: Golonka J, Pícha FJ (eds) (2006) The Carpathians and their forehand. Geology and hydrocarbon resources. AAPG Mem 84:191–204Google Scholar
  4. Beard BL, Medaris LG, Johnson CM, Jelínek E, Tonika J, Riciputi LR (1995) Geochronology and geochemistry of eclogites from the Mariánské Lázně Complex, Czech Republic: implication for Variscan orogenesis. Geol Rundsch 84:552–567CrossRefGoogle Scholar
  5. Behr HJ, DEKORP Research Group B (1994) Crustal structure of the Saxothuringian Zone: results of the deep seismic profile MVE-90 (East). Z Geol Wiss 22:647–769Google Scholar
  6. Beránek B, Dudek A (1972) The results of deep seismic sounding in Czechoslovakia. Z Geophys 38:415–427Google Scholar
  7. Beránek B, Dudek A (1981) Geological interpretation of transformed gravity fields in Bohemian Massif and West Carpathians. Prague Sbor Geol Věd Appl Geophys 17:37–59 (in Czech)Google Scholar
  8. Blecha V, Štemprok M, Fischer T (2009) Geological interpretation of gravity profiles through the Karlovy Vary granite massif (Czech Republic). Stud Geophys Geod 53:295–314CrossRefGoogle Scholar
  9. Bleibinhaus F, Stich D, Simon M, Gebrande H (2003) New results from amplitude preserving prestack depth migration of the Münchberg/Vogtland segment of the MVE deep seismic survey. J Geodyn 35:33–43CrossRefGoogle Scholar
  10. Bortfeld RK et al (1988) Results of DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. J Geophys 62:69–101Google Scholar
  11. Boušková A, Fischer T, Horálek J, Hudová Z (2008) WEBNET catalogues of local earthquakes.
  12. Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria)” implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116CrossRefGoogle Scholar
  13. Brückl E, Bodoky T, Hegedüs E, Hrubcová P, Gosar A, Grad M, Guterch A, Hajnal Z, Keller GR, Špičák A, Sumanovac F, Thybo H, Weber F (2003) ALP 2002 seismic experiment. Stud Geophys Geod 47:671–679CrossRefGoogle Scholar
  14. Bucha V, Blížkovský M (eds) (1994) Crustal structure of the Bohemian Massif and West Carpathians. Academia, Prague and Springer, Berlin, pp 174–177Google Scholar
  15. Cajz V, Rapprich V, Erban V, Pécskay Z, Radoň M (2009) Late Miocene volcanic activity in the České středohoří Mountains (Ohře/Eger Graben, northern Bohemia). Geol Carpath 60:519–533CrossRefGoogle Scholar
  16. Cháb J, Šrámek J, Pokorný L, Chlupáčová M, Manová M, Vejnar Z, Waldhausrová J, Žáček V (1997) The Teplá-Barrandian Unit. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany, p 80. J Geol Sci 47:32–36 (Prague)Google Scholar
  17. Chlupáčová M, Skácelová Z, Nehybka V (2003) P-wave anizotropy of rock from the seismic area in Western Bohemia. Elsevier Science Ltd. J Geodyn 35:45–57Google Scholar
  18. Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones. J Geophys Res 84:6849–6857CrossRefGoogle Scholar
  19. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788CrossRefGoogle Scholar
  20. Dallmeyer R, Urban M (1998) Variscan vs Cadomian tectonothermal activity in northwestern sectors of the Teplá-Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106CrossRefGoogle Scholar
  21. Dallmeyer RD, Franke W, Weber K (1995) Pre-permian geology of Central and Eastern Europe. Springer, BerlinGoogle Scholar
  22. DEKORP, Orogenic Processes Working Groups (1999) Structure of Saxonian granulites—geological and geophysical constraints on the exumation of HP/HT rocks. Tectonics 18:756–773CrossRefGoogle Scholar
  23. Dörr W, Zulauf G (2008) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci (Geol Rundsch) 99:299–325CrossRefGoogle Scholar
  24. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to early Cambrian history of an active plate margin in the Tepá–Barrandian unit—a correlation of U–Pb isotopic dilution—TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  25. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. Rozpr Čs Akad Věd Ř mat přír Věd 90:3–85Google Scholar
  26. Emmermann R, Lauterjung J (1997) The German deep drilling program KTB: overview and major results. J Geophys Res 102(B8):18179–18201Google Scholar
  27. Enderle U, Schuster K, Prodehl C, Schulze A, Bribach J (1998) The refraction seismic experiment GRANU95 in the Saxothuringian belt, SE-Germany. Geophys J Int 133:245–259CrossRefGoogle Scholar
  28. Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy of the Moldanubian Zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 417–428Google Scholar
  29. Finger F, Hanžl P, Pin C, Von Quadt A, Styer HP (2000) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:103–112Google Scholar
  30. Finger F, Gerde A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci 52:9–28CrossRefGoogle Scholar
  31. Fischer T, Horálek J (2000) Refined locations of the swarm earthquakes in the Nový Kostel focal zone and spatial distribution of the January 1997 swarm in Western Bohemia, Czech Republic. Stud Geophys Geod 44:210–226CrossRefGoogle Scholar
  32. Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:35–61Google Scholar
  33. Franke W, Stein E (2000) Exhumation mechanisms of high-grade rocks in the Saxo-Thuringian Belt. Geophysical constraints and geodynamic concepts. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:337–354Google Scholar
  34. Franke W, Zelazniewicz A (2000) The eastern termination of the Variscides: terrane correlation and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:63–86Google Scholar
  35. Friedl G, von Quadt A, Finger F (1996) Timing der Intrusionstätigkeit im Südböhmischen Batholith. Book of Abstracts, 6. Symposium Tektonik-Strukturgeologie-Kristallingeologie, Salzburg, pp 127–130Google Scholar
  36. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. Int J Earth Sci 93:802–823Google Scholar
  37. Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (The southeastern Bohemian Massif, Czech Republic—Austria). Tectonics 6:1389–1413CrossRefGoogle Scholar
  38. Goodwin EB, Thompson GA, Okaya DA (1989) Seismic identification of basement reflectors: the Bagdad reflection sequence in the Basin and Range-Colorado Plateau Transition Zone. Tectonics 8:821–831CrossRefGoogle Scholar
  39. Guy A, Edel JB, Schulmann K, Tomek Č, Lexa O (2010) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157. doi: 10.1016/j.lithos.2010.08.008 Google Scholar
  40. Hamilton W, Wagner L, Wessely G (1999) Oil and gas in Austria. Mitt Osterr Geol Ges 92:235–262Google Scholar
  41. Hasalová P, Schulmann K (2003) Development of the Gföhl Migmatites through Partial melting and textural annealing of high-grade orthogneiss via process of disintegration of solid state texture. GeoLines 16:157–158Google Scholar
  42. Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). Lithos 102:508–537CrossRefGoogle Scholar
  43. Hirschmann G (1996a) KTB—the structure of a Variscan terrane boundary: seismic investigation-drilling-models. Tectonophysics 264:327–339CrossRefGoogle Scholar
  44. Hirschmann G (1996b) KTB—the structure of a Variscan terrane boundary: seismic investigation-drilling-models. Tectonophysics 30:327–339CrossRefGoogle Scholar
  45. Hirschmann G, Duyster J, Harms U, Kontny A, Lapp M, de Wall H, Zulauf G (1997) The KTB superdeep borehole: petrography and structure of a 9-km-deep crustal section. Geol Rundsch 86(Supplement 1):3–13CrossRefGoogle Scholar
  46. Hofmann Y, Jahr T, Jentzsch G (2003) Three-dimensional gravimetric modeling to detect the deep structure of the region Vogtland/NW-Bohemia. J Geodyn 35:209–220Google Scholar
  47. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor Geol věd Ložisk Geol Mineral 31:5–25Google Scholar
  48. Holub FV (2000) Geochemical signature of subduction-related processes in composition of Variscan intrusive rocks of the Bohemian Massif. GeoLines (Praha) 10:30–31Google Scholar
  49. Holub V, Tásler R (1978) Filling of the Late Palaeozoic continental basins in the Bohemian Massif as a record of their palaeogeographical development. Geol Rundsch 1:91–109. doi: 10.1007/BF01803258 CrossRefGoogle Scholar
  50. Holub FV, Rapprich V, Erban V, Pecskay Z, Mlčoch B, Míková J (2010) Petrology and geochemistry of the tertiary alkaline intrusive rocks at Doupov, Doupovské hory volcanic complex (NW Bohemian Massif). J Geosci 55:251–278CrossRefGoogle Scholar
  51. Hölzel M, Wagreich M, Faber R, Strauss P (2008) Regional subsidence analysis in the Vienna Basin (Austria). Austrian J Earth Sci 101:88–98Google Scholar
  52. Horálek J, Fischer T (2008) Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms (a Review). Stud Geophys Geod 52:455–478CrossRefGoogle Scholar
  53. Horálek J, Fischer T, Boušková A, Jedlička P (2000) The Western Bohemia/Vogtland region in the light of the webnet network. Stud Geophys Geod 44:107–125CrossRefGoogle Scholar
  54. Hrubcová P, Sroda P, Grad M, Geissler WH, Guterch A, Vozár J, Hegedus and Sudetes 2003 Working Group (2010) From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys J Int. doi: 10.1111/j.1365-246X.2010.04766.x
  55. Hrubcová P, Sroda P, Špičák A, Guterch A, Grad M, Keller GR, Brückl E, Thybo H (2005) Crustal uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000. J Geophys Res 110:B11305CrossRefGoogle Scholar
  56. Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004) Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Tr Roy Soc Edinb Earth Sci 95:141–159CrossRefGoogle Scholar
  57. Janoušek V, Wiegand BA, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian plutonic complex. J Geol Soc 167:347–360. doi: 10.1144/0016-76492009-008 CrossRefGoogle Scholar
  58. Jelínek E, Štědrá V, Cháb J (1997) The Mariánské Lázně complex. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:32–36 (Prague)Google Scholar
  59. Jiříček R, Tomek Č (1981) Sedimentary and structural evolution of the Vienna Basin. Earth Evol Sci 1:195–206Google Scholar
  60. Kopecký L (1979) Magmatism of the Ohře rift in the Bohemian Massif, its relationship to the deep fault tectonics and to the geologic evolution, and its ore mineralisation. In: Mahel’ M, Reichwalder P (eds) Czechoslovak geology and global tectonics. Veda, Bratislava, pp 167–181Google Scholar
  61. Kováč M (2001) Subsidence history and tectonic control during the development of the Western Carpathian Neogene Basins. GeoLines 13:82–83Google Scholar
  62. Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forsch Inst Senckenberg 246:187–212Google Scholar
  63. Krawczyk CM, Stein E, Choi S et al (2000) Geophysical constraints on exhumation mechanisms of high-pressure rocks: the Saxothuringian case between the Franconian Line and Elbe Zone. Geol Soc Spec Publ 179:303–322CrossRefGoogle Scholar
  64. Lenhardt WA, Švancara J, Melichar P, Pazdírková J, Havíř J, Sýkorová Z (2007) Seismic activity of the Alpine-Carpathian-Bohemian Massif region with regard to geological and potential field data. Geologica Carpathica 4:397–412Google Scholar
  65. Linnemann U, Gehmlich M, Tichomirova M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of the Saxo-Thuringia at the margin of Godwana in the light of single zirkon geochronology and basin development. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:131–153Google Scholar
  66. Malkovský M (1987) The mesozoic and tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137:31–42. doi: 10.1016/0040-1951(87)90311-8 CrossRefGoogle Scholar
  67. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  68. McCann T (co-ordinator), Skompski S, Poty E, Dusar M, Vozarova A, Schneider J, Wetzel A, Krainer K, Kornpihl K, Schäfer A, Krings M, Oplustil S, Tait J (2008) Carboniferous. In: McCann T (ed) The geology of Central Europe: precambrian and palaeozoic. Geological Society of London, pp 411–529Google Scholar
  69. Meissner R, Bortfeld RK (1990) DEKORP-Atlas. Springer, BerlinGoogle Scholar
  70. Mísař Z, Dudek A (1993) Some critical events in the geological history of the eastern margin of the Bohemian Massif. J Czech Soc 38:9–20Google Scholar
  71. Mlčoch B, Konopásek J (2010) Pre-late Carboniferous geology along the contact of the Saxothuringian and Teplá-Barrandian zones in the area covered by younger sediments and volcanics (western Bohemian Massif, Czech Republic). J Geosci 55:81–94CrossRefGoogle Scholar
  72. Mlčoch B, Skácelová Z (2009) Digital elevation model of the crystalline basement of the Cheb and Sokolov basin areas (Western Bohemia, Central Europe). Zetschrift für geologische Wissenschaften 37, 3:145–152. ISSN 0303-4534Google Scholar
  73. Nehybka V, Skácelová Z (1997) Seismological study of the Kraslice/Vogtland-Oberpfalz region. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:186–190, PragueGoogle Scholar
  74. Neunhöfer H, Hemmann A (2005) Earthquake swarms in the Vogtland/Western Bohemia region: spatial distribution and magnitude-frequency distribution as an indication of the genesis of swarms? J Geodyn 39(2005):361–385CrossRefGoogle Scholar
  75. Neunhöfer H, Meier T (2004) Seismicity in the Vogtland/Western Bohemia earthquake region between 1962 and 1998. Stud Geophys Geod 48:539–562Google Scholar
  76. Novotný M (2011) Depth-recursive tomography of Bohemian Massif at CEL09 transect—part A: deblurring of velocity image and resolution estimates. Surv GeophysGoogle Scholar
  77. Novotný M, Špičák A, Weinlich FH (2011) Depth-recursive tomography reveals the focal zones of West Bohemian earthquake swarms and their sealing caps as distinct low and high-velocity anomalies. In: The IUGG 2011 abstract proceedings, abstract ID 2429, Melbourne, Australia, June 28–July 7, 2011Google Scholar
  78. Novotný M, Špičák A, Weinlich F (2012a) Structural preconditions of West Bohemian earthquake swarms (in preparation)Google Scholar
  79. Novotný M (2012b) Depth-recursive tomography of Bohemian Massif at S04 transect (in preparation)Google Scholar
  80. Novotný M, Brož M, Hrubcová P, Hubatka F, Karousová O, Špičák A, Švancara J, Špaček P, Uličný D, ALP Working Group, SUDETES Working Group (2005) SLICE—Seismic Lithospheric Investigation of Central Europe (in Czech). Final report, Czech Geological Survey—GeofondGoogle Scholar
  81. Novotný M, Skácelová Z, Mrlina J, Mlčoch B, Růžek B (2009) Depth-recursive tomography along the Eger Rift using the S01 profile refraction data: tested at the KTB super drilling hole, structural interpretation supported by magnetic, gravity and petrophysical data. Surv Geophys 30:561–600. doi: 10.1007/s10712-009-9068-0 CrossRefGoogle Scholar
  82. Novotný M, Skácelová Z, Mlčoch B (2010) Crustal structures beneath the Saxonian Granulite Massif, the České středohoří and the Doupovské hory Mts. based on the depth-recursive tomography. J Geosci 55:187–199. doi: 10.3190/jgeosci.073 CrossRefGoogle Scholar
  83. O’Brien PJ (2000) The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc London Spec Publ 179:369–386Google Scholar
  84. Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222CrossRefGoogle Scholar
  85. Pitra P, Burg JP, Guiraud M (1999) Late Variscan strike-slip tectonics between the Teplá-Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J Geol Soc 156:1003–1020. doi: 10.1144/gsjgs.156.5.1003 CrossRefGoogle Scholar
  86. Pokorný L, Manová M, Beneš L (1997) Magnetometry and radiometry In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:36–43 (Prague)Google Scholar
  87. Rajlich P (1987) Variszische duktile Tektonik im Bohrnische Massif. Geol Rundsch 76(3):755–786Google Scholar
  88. Rapprich V, Holub FV (2008) Geochemical variations within the upper Oligocene–lower Miocene lava succession of Úhošť Hill (NE margin of Doupovské hory Mts, Czech Republic). Geol Q 52(3):253–268Google Scholar
  89. Růžek B, Hrubcová P, Novotný M, Špičák A, Karousová O (2007) Inversion of travel times obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 AND SUDETES 2003. Stud Geophys Geod 51:141–164CrossRefGoogle Scholar
  90. Schäfer F, Oncken O, Kemnitz H, Romer RL (2000) Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc London Spec Publ 179:281–302Google Scholar
  91. Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). Int J Earth Sci 89:617–630CrossRefGoogle Scholar
  92. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448. doi: 10.2475/ajs.305.5.407 CrossRefGoogle Scholar
  93. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286CrossRefGoogle Scholar
  94. Servais T, Dzik J, Fatka O, Heuse T, Vecoli M, Verniers J (2008) Ordovician. In: McCann T (ed) The geology of Central Europe: precambrian and palaeozoic. Geological Society of LondonGoogle Scholar
  95. Špičáková L, Uličný D, Koudelková G (2000) Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Late Oligocene and Pliocene: a preliminary note. Stud Geophys Geod 44:556–580CrossRefGoogle Scholar
  96. Šrámek J, Mrlina J, Švancara J, Chlupáčová M (1997) Gravimetry. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. pp 24–25. J Geol Sci 47:32–36 (Prague)Google Scholar
  97. Štědrá V, Kachlík V, Crowley QC (2001) Sources, emplacement environments and metamorphic evolution of Metagabbros in the Mariánské Lázně complex and Teplá crystalline unit (NW Bohemian Massif). GeoLines 13:117–118Google Scholar
  98. Štědrá V, Kachlík V, Kryza R (2002) Coronitic melagabbros of the Mariánské Lázně complex and Teplá crystalline unit: inferences for the tectonometamorphic evolution of the western margin of the Teplá Barrandian Unit, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc London Spec Publ 201:217–236Google Scholar
  99. Štemprok M, Seifert T, Holub FV, Chlupáčová M, Dolejš D, Novák JK, Pivec E, Lang M (2008) Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic. J Geosci 53:65–104CrossRefGoogle Scholar
  100. Šťovíčková N (1973) Deep fault tectonics and their relation to endogenous processes. Academia, Prague, pp 1–198 (in Czech)Google Scholar
  101. Suess FE (1912) Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Denkschr Österr Akad Wiss Mat Naturwiss Kl 88:541–631 (in German)Google Scholar
  102. Suk M et al. (1984) Geological history of the territory of the Czech Socialist Republic. Geological Survey, Praha, 1984Google Scholar
  103. Švancara J, Chlupáčová M (1997) Density model of geological structure along the profile 9HR. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:32–36 (Prague)Google Scholar
  104. Švancara J, Gnojek I, Hubatka F, Dědáček K (2000) Geophysical field pattern in the West Bohemian geodynamic active area. Stud Geophys Geod 44:307–326CrossRefGoogle Scholar
  105. Švancara J, Špaček P, Hubatka F (2005) Chap. 3. In: Novotný M et al. (ed) SLICE—Seismic Lithospheric Investigation of Central Europe (in Czech). Final report, Czech Geological Survey—Geofond, Prague, 2005Google Scholar
  106. Tomek Č, Thon A (1988) Interpretation of seismic reflection profiles from the Vienna basin, the Danube basin and the Transcarpathian depression in Czechoslovakia. In: Royden LH, Horvath F (eds) The Pannonian Basin. Am Assoc Pet Geol Mem 45:171–182Google Scholar
  107. Tomek Č, Dvořáková V, Vrána S (1997) Geological interpretation of the 9HR and 503M seismic profiles in western Bohemia. J Geol Sci 47:43–51 (Prague)Google Scholar
  108. Ulrych J, Pivec E, Lang M, Balogh K, Kropáček V (1999) Cenozoic intraplate volcanic rock series of the Bohemian Massif: a review. GeoLines 9:123–135Google Scholar
  109. Verner K, Holub F, Žák J (2004) Structural evolution and emplacement of the Durbachitic Knížecí Stolec Pluton, South Bohemian (Moldanubian) Batholith. GeoLines 17:97–98Google Scholar
  110. Vrána S, Štědrá V (1998) Crustal structure of the western part of the Bohemian Massif, Czech Republic. Episodes 21, No 4Google Scholar
  111. Vrána S, Cháb J, Štědrá V (1997) Main results of the project. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:15–23 (Prague)Google Scholar
  112. Weise SM, Bräuer K, Kämpf H, Strauch G, Koch U (2001) Transport of mantle volatiles through the crust traced by seismically released fluids: a natural experiment in the earthquake swarm area Vogtland/NW Bohemia, Central Europe. Tectonophysics 336:137–150CrossRefGoogle Scholar
  113. Ziegler PA (1990) Geological atlas of Western and Central Europe, 2nd edn. The Hague. Distributed by Geological Society Publishing House, Avon, EnglandGoogle Scholar
  114. Zulauf G, Bues C, Dörr W, Vejnar Z (2002) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci (Geol Rundsch) 91:850–864CrossRefGoogle Scholar
  115. Žák J, Schulmann K, Hrouda F (2003) Multiple fabric patterns and emplacement mechanisms of a composite Batholith: A result of polyphase tectonic evolution of continental magmatic arc (Central Bohemian Batholith, Bohemian Massif). GeoLines 16:112–113Google Scholar
  116. Žák J, Holub FV, Verner K (2005) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci (Geol Rundsch) 94:385–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Geophysics ASCRPrague 4Czech Republic

Personalised recommendations