Surveys in Geophysics

, 32:621 | Cite as

Response of a Coupled Ocean–Atmosphere Model to Greenland Ice Melting

  • D. Stammer
  • N. Agarwal
  • P. Herrmann
  • A. Köhl
  • C. R. Mechoso
Article

Abstract

We investigate the transient response of the global coupled ocean–atmosphere system to enhanced freshwater forcing representative of melting of the Greenland ice sheets. A 50-year long simulation by a coupled atmosphere–ocean general circulation model (CGCM) is compared with another of the same length in which Greenland melting is prescribed. To highlight the importance of coupled atmosphere–ocean processes, the CGCM results are compared with those of two other experiments carried out with the oceanic general circulation model (OGCM). In one of these OGCM experiments, the prescribed surface fluxes of heat, momentum and freshwater correspond to the unperturbed simulation by the CGCM; in the other experiment, Greenland melting is added to the freshwater flux. The responses by the CGCM and OGCM to the Greenland melting have similar patterns in the Atlantic, albeit the former having five times larger amplitudes in sea surface height anomalies. The CGCM shows likewise stronger variability in all state variables in all ocean basins because the impact of Greenland melting is quickly communicated to all ocean basins via atmospheric bridges. We conclude that the response of the global climate to Greenland ice melting is highly dependent on coupled atmosphere–ocean processes. These lead to reduced latent heat flux into the atmosphere and an associated increase in net freshwater flux into the ocean, especially in the subpolar North Atlantic. The combined result is a stronger response of the coupled system to Greenland ice sheet melting.

Keywords

Greenland ice sheet melting Sealevel rise Coupled atmosphere–ocean experiments 

References

  1. Agarwal N, Köhl A, Stammer D, Mechoso CR (2011) Atmospheric response to high latitude perturbations in oceanic fresh-water forcing (in preparation)Google Scholar
  2. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J Atmos Sci 31:674–701CrossRefGoogle Scholar
  3. Cazes-Boezio G, Menemenlis D, Mechoso CR (2008) Impact of ECCO ocean-state estimates on the initialization of seasonal climate forecasts. J Clim 21:1929–1947CrossRefGoogle Scholar
  4. Dorman JL, Sellers PJ (1989) A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J Appl Meteorol 28:833–855CrossRefGoogle Scholar
  5. Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim 16:4043–4060CrossRefGoogle Scholar
  6. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  7. Greatbatch RJ (1994) A note on the representation of steric sea-level in models that conserve volume rather than mass. J Geophys Res 99:12767–12771CrossRefGoogle Scholar
  8. Harshvardhan RD, Randall DA, Corsetti TG (1987) A fast radiation parameterization for atmospheric circulation models. J Geophys Res 92:1009–1016CrossRefGoogle Scholar
  9. Harshvardhan RD, Corsetti TG, Dazlich DA (1989) Earth radiation budget and cloudiness simulations with a general circulation model. J Atmos Sci 46:1922–1942CrossRefGoogle Scholar
  10. Hawkins E, Sutton R (2009) Decadal predictability of the Atlantic Ocean in a coupled GCM: forecast skill and optimal perturbations using linear inverse modelling. J Clim. doi:10.1175/2009JCLI2720.1
  11. Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys Res Lett. doi:10.1029/2009GL037998
  12. Köhler M (1999) Explicit prediction of ice clouds in general circulation models. Ph.D. dissertation, Department of Atmospheric Sciences, University of California, Los AngelesGoogle Scholar
  13. Konor CS, Cazes-Boezio G, Mechoso CR, Arakawa A (2008) Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment. Mon Weather Rev 137(3):1061CrossRefGoogle Scholar
  14. Large WG, McWilliams JC, Doney S (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  15. Landerer FW, JH Jungclaus, L Marotzke (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  16. Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J Phys Oceanogr 27:2418–2447CrossRefGoogle Scholar
  17. Li JL, Köhler M, Farrara JD, Mechoso CR (2002) The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Mon Weather Rev 130:1433–1441CrossRefGoogle Scholar
  18. Luthke S, Zwally H, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland mass loss by drainage system from satellite gravity observations. Science 314(5803):1286–1289CrossRefGoogle Scholar
  19. Ma HY, Mechoso CR, Xue Y, Xiao H, Wu CM, Li JL, DeSales F (2010) Impact of land surface processes on the South American warm season climate. Clim Dyn. doi:10.1007/s00382-010-0813-3
  20. Okumora YM, Deser C, Hu A (2009) North Pacific climate response to freshwater focring in the subarctic North Atlantic: oceanic and atmospheric pathways. J Clim. doi:10.1175/2008JCLI2511.1
  21. Pan DM, Randall DA (1998) A cumulus parameterization with a prognostic closure. Q J R Meteorol Soc 124:949–981Google Scholar
  22. Pardaens A, Gregory JM, Lowe J (2010) A model study of factors influencing projected changes in regional sea level over the twenty-first century. Clim Dyn. doi:10.1007/s00382-009-0738-x
  23. Rahmstorf S, Willebrand J (1995) The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 25:787–805CrossRefGoogle Scholar
  24. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett. doi:10.1029/2005GL023655
  25. Redi MH (1982) Oceanic isopycnical mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158CrossRefGoogle Scholar
  26. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res. doi:10.1029/2006JC004079
  27. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:698–722CrossRefGoogle Scholar
  28. Suarez M, Arakawa A, Randall D (1983) The parameterization of the planetary boundary layer in the UCLA general circulation model: formulation and results. Mon Weather Rev 111:2224–2243CrossRefGoogle Scholar
  29. Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie SP, Yin J (2007) The Influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim. doi:10.1175/JCLI4283.1
  30. Xue Y, Sellers PJ, Kinter JL III, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  31. Xue Y, Bastable HG, Dirmeyer PA, Sellers PJ (1996) Sensitivity of simulated surface fluxes to changes in land surface parameterization—a study using ABRACOS data. J Appl Meteorol 35:386–400CrossRefGoogle Scholar
  32. Xue Y, Fennessy MJ, Sellers PJ (1996) Impact of vegetation properties on US summer weather prediction. J Geophys Res 101:7419–7430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • D. Stammer
    • 1
  • N. Agarwal
    • 2
  • P. Herrmann
    • 2
  • A. Köhl
    • 1
  • C. R. Mechoso
    • 3
  1. 1.Institut für MeereskundeUniversität HamburgHamburgGermany
  2. 2.Max-Planck-Institut für MeteorologieHamburgGermany
  3. 3.University of California, Los AngelesLos AngelesUSA

Personalised recommendations