Surveys in Geophysics

, Volume 32, Issue 4–5, pp 437–458 | Cite as

Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications

  • Andreas VieliEmail author
  • Faezeh M. Nick


Recent dramatic acceleration, thinning and retreat of tidewater outlet glaciers in Greenland raises concern regarding their contribution to future sea-level rise. These dynamic changes seem to be parallel to oceanic and climatic warming but the linking mechanisms and forcings are poorly understood and, furthermore, large-scale ice sheet models are currently unable to realistically simulate such changes which provides a major limitation in our ability to predict dynamic mass losses. In this paper we apply a specifically designed numerical flowband model to Jakobshavn Isbrae (JIB), a major marine outlet glacier of the Greenland ice sheet, and we explore and discuss the basic concepts and emerging issues in our understanding and modelling ability of the dynamics of tidewater outlet glaciers. The modelling demonstrates that enhanced ocean melt is able to trigger the observed dynamic changes of JIB but it heavily relies on the feedback between calving and terminus retreat and therefore the loss of buttressing. Through the same feedback, other forcings such as reduced winter sea-ice duration can produce similar rapid retreat. This highlights the need for a robust representation of the calving process and for improvements in the understanding and implementation of forcings at the marine boundary in predictive ice sheet models. Furthermore, the modelling uncovers high sensitivity and rapid adjustment of marine outlet glaciers to perturbations at their marine boundary implying that care should be taken in interpreting or extrapolating such rapid dynamic changes as recently observed in Greenland.


Tidewater outlet glaciers Cryosphere Greenland Calving Ice sheet modelling 



We would like to acknowledge M. Luethi for inspiring scientific discussions and G. J.-M. C. Leysinger Vieli and two anonymous reviewers for their useful comments. We further thank I. Joughin for providing the velocity data.


  1. Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2001) Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J Geophys Res 106(D24):33729–33742CrossRefGoogle Scholar
  2. Albrecht T, Martin MA, Winkelmann R, Haseloff M, Levermann A (2011) Parameterization for subgrid-scale motion of ice-shelf calving fronts. Cryosphere 5:35–44CrossRefGoogle Scholar
  3. Alley RB et al (2010) History of the Greenland ice sheet: paleoclimatic insights. Q Sci Rev 29:1728–1756CrossRefGoogle Scholar
  4. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level change. Science 310:456–460CrossRefGoogle Scholar
  5. Alley RB, Horgan HJ, Joughin I, Cuffey KM, Dupont TK, Parizek BR, Anandakrishnan S, Bassis J (2008) A simple law for ice-shelf calving. Science 322(5906):1344CrossRefGoogle Scholar
  6. Amundson JM, Truffer M (2010) A unifying framework for iceberg-calving models. J Glaciol 56(199):822–830CrossRefGoogle Scholar
  7. Amundson JM, Fahnestock M, Truffer M, Brown J, Luethi MP, Motyka RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J Geophys Res 115(F01005). doi: 10.1029/2009JF001405
  8. Bamber JL, Alley RB, Joughin I (2007) Rapid response of modern day ice sheets to external forcing. Earth Plan Res Lett 257:1–13CrossRefGoogle Scholar
  9. Bartholomew I, Nienow P, Shepherd A (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat Geosci 3:408–411CrossRefGoogle Scholar
  10. Bassis J (2010) Hamilton-type principles applied to ice-sheet dynamics: new approximations for large-scale ice sheet flow. J Glaciol 56(197):497–513CrossRefGoogle Scholar
  11. Bassis J (2011) The statistical physics of iceberg calving and the emergence of universal calving laws. J Glaciol 57(201):3–16 CrossRefGoogle Scholar
  12. Benn DI, Warren CR, Mottram RH (2007) Calving processes and the dynamics of calving glaciers. Earth Sci R 82:143–179CrossRefGoogle Scholar
  13. Bindschadler R (1997) Actively surging West Antarctic ice streams and their response characteristics. Ann Glaciol 24:409–414Google Scholar
  14. Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stresses. J Glaciol 41(138):333–344Google Scholar
  15. Bueler E, Brown J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J Geophys Res 114(F03008). doi: 10.1029/2008JF001179
  16. Csatho B, Schenk T, van der Veen CJ, Krabill WB (2008) Intermittent thinning of Jakobshavn Isbrae, west Greenland, since Little Ice Age. J Glaciol 54(184):131–144CrossRefGoogle Scholar
  17. Docquier D, Perichon L, Pattyn F (2011) Representing grounding line dynamics in numerical models ice sheet models: recent advances and outlook. Surv Geophys. doi: 10.1007/s10712-011-9133-3
  18. Dupont TK, Alley RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys Res Lett 32:L04503. doi: 10.1029/2004GL022024
  19. Dupont TK, Alley RB (2006) Role of small ice shelves in sea-level rise. Geophys Res Lett 33:L09503. doi: 10.1029/2005GL025665
  20. Durand G, Gagliardini O, de Fleurina B, Zwinger T, Le Meur E (2009) Marine ice sheet dynamics: hysterisis and neutral equilibrium. J Geophys Res 114(F03009). doi: 10.1029/2008JF001170
  21. Echelmeyer K, Clarke TS, Harrison WD (1990) Jakobshavn Isbrae, west Greenland, seasonal variations in velocity or the lack of thereof. J Glaciol 36(122):82–88Google Scholar
  22. Echelmeyer KA, Harrison W, Larsen C, Mitchell JE (1994) The role of the margins in the dynamics of an active ice stream. J Glaciol 40(136):527–538Google Scholar
  23. Fowler AC (2010) Weertman, Lliboutry and the development of sliding. J Glaciol 56(200):965–972CrossRefGoogle Scholar
  24. Gagliardini O, Cohen D, Raback P, Zwinger T (2007) Finite-element modelling of subglacial cavities and related friction law. J Geophys Res 112(F02027). doi: 10.1029/2006JF000576
  25. Gillet-Chaulet F, Gagliardini O, Nodet M, Ritz C, Durand G, Zwinger T, Seddik H, Greve R (2011) Full-Stokes finite element modelling of the Greenland ice sheet using inverse methods. Geophys Res Abs 13(EGU2011-8399) Google Scholar
  26. Gladstone R, Lee V, Vieli A, Payne AJ (2010) Grounding line migration in an adaptive mesh ice sheet model. J Geophys Res 115(F04014). doi: 10.1029/2009JF001615
  27. Goldberg D, Holland DM, Schoof C (2009) Grounding line movement and buttressing in marine ice sheets. J Geophys Res 114(F04026). doi: 10.1029/2008JF001227
  28. Goldberg D (2011) A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J Glaciol 57(201):157–170CrossRefGoogle Scholar
  29. Holland DM, Thomas TRH, deYoung B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1:659–664CrossRefGoogle Scholar
  30. Holland PR, Jenkins A, Holland DM (2010) Ice ocean processes in the Bellingshausen Sea, Antarctica. J Geophys Res 115(C05020). doi: 10.1029/2008JC005219
  31. Howat I, Joughin I, Fahnestock M, Smith B, Scambos T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate. J Glaciol 54:646–660CrossRefGoogle Scholar
  32. Howat IH, Joughin I, Scambos TA (2007) Rapid changes of ice discharge from Greenland outlet glaciers. Science 315:1559–1561CrossRefGoogle Scholar
  33. Howat IM, Box JE, Ahn Y, Herrington A, McFadden EM (2010) Seasonal variability in the dynamics of marine terminating outlet glaciers in Greenland. J Glaciol 56(198):601–613CrossRefGoogle Scholar
  34. Hughes T (1986) The Jacobshavn effect. Geophys Res Lett 13(1):46–48CrossRefGoogle Scholar
  35. IPCC (2007) Climate change, 2007: the physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  36. Joughin I, Rignot E, Rosanova CE, Luchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island glacier, Antarctica. Geophys Res Lett 30(13):1706CrossRefGoogle Scholar
  37. Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobhavn Isbrae glacier. Nature 432:608–610CrossRefGoogle Scholar
  38. Joughin I, Alley RB, Ekstroem G, Fahnestock M, Moon T, Nettles M, Truffer M, Tsai VC (2008a) Ice-front variation and tidewater behaviour on Helheim and Kangerdlugssuaq Glaciers, Greenland. J Geophys Res 113:F01004. doi: 10.1029/2007JF000837
  39. Joughin I, Das SB, King MA, Smith BE, Howat IH, Moon T (2008b) Seasonal speedup along the Western margin of the Greenland ice sheet. Science 320:781–783CrossRefGoogle Scholar
  40. Joughin I, Howat I, Fahnestock M, Smith B, Krabill W, Alley RB, Stern H, Truffer M (2008c) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res 113:F04006. doi: 10.1029/2008JF001023
  41. Joughin I, Smith B, Howat IM, Scambos T, Moon T (2010a) Greenland flow variability from ice sheet wide velocity mapping. J Glaciol 56(197):415–430CrossRefGoogle Scholar
  42. Joughin I, Smith BE, Holland DM (2010b) Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys Res Lett 37(L20502)Google Scholar
  43. Katz RF, Worster MG (2010) Stability of ice-sheet grounding lines. Proc R Soc Lond Ser A 466:1597–1620CrossRefGoogle Scholar
  44. Khazendar A, Rignot E, Larour E (2009) Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills ice shelf. J Geophys Res 114(F04007). doi: 10.1029/2008JF001124
  45. Koenig L, Martin S, Stuedinger M, Sonntag J (2010) Polar airborne observations fill gap in satellite data. Eos 91(38):333–334CrossRefGoogle Scholar
  46. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi: 10.1029/2004GL021533
  47. Larour E, Rignot E, Aubry D (2004) Modelling of rift propagation on Ronne ice shelf, Antarctica, and sensitivity to climate change. Geophys Res Lett 31:L16404. doi: 10.1029/2004GL020077
  48. Lloyd J, Moros M, Perner K, Telford RJ, Kuijpers A, Jansen E, McCarthy D (2011) A 100-year record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland. Geology 39:131–139Google Scholar
  49. Luckman A, Murray T (2005) Seasonal variation in velocity before retreat of Jakobshavn Isbrae, Greenland. Geophys Res Lett 32(L08501). doi: 10.1029/2005GL022519
  50. Luethi MP, Fahnestock MA, Truffer M, Motyka RJ (2009) Jakobshavn Isbrae: is there a speed limit? Eos Trans AGU, Fall Meet Suppl 90(52), meet. Suppl. Abstract C14A-03Google Scholar
  51. MacAyeal DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J Geophys Res 94(B4):4071–4087CrossRefGoogle Scholar
  52. Meier MF, Post A (1987) Fast tidewater glaciers. J Geophys Res 92(B9):9051–9058CrossRefGoogle Scholar
  53. Moon T, Joughin I (2008) Changes in ice front positions on Greenland’s outlet glaciers from 1992 to 2007. J Geophys Res 113(F202022):415–430Google Scholar
  54. Motyka R, Hunter L, Echelmeyer K, Conner C (2002) Submarine melting at the terminus of a temperate tidewater glacier, LeCont Glacier, Alaska, U.S.A. Ann Glaciol 36(1):57–65CrossRefGoogle Scholar
  55. Motyka RJ, Truffer M, Fahnestock MA, Mortesen J, Rysgaard S, Howat I (2011) Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J Geophys Res 116(F01007). doi: 10.1029/2009JF001632
  56. Murray T, Scharrer K, James TD, Dye SR, Hanna E, Booth AD, Selems N, Luckman A, Hughes ALC, Cook S, Hybrechts P (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications ice sheet mass change. J Geophys Res 115(F03026). doi: 10.1029/2009JF001522
  57. Nick FN, Vieli A, Howat I, Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat Geosci 2:110–114CrossRefGoogle Scholar
  58. Nick FN, van der Veen CJ, Vieli A, Benn DI (2010) A physically based calving model applied to marine outlet glaciers and implications for their dynamics. J Glaciol 56(199):781–794CrossRefGoogle Scholar
  59. Nowicki SMJ, Wingham DJ (2008) Conditions for a steady ice sheet-ice shelf junction. Earth Plan Res Lett 265:246–255CrossRefGoogle Scholar
  60. Nye JF (1963) The response of a glacier to changes in the rate of nourishment and wastage. Proc R Soc Lond Ser A 275:87–112CrossRefGoogle Scholar
  61. Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J Geophys Res 108(B8):2382–2395CrossRefGoogle Scholar
  62. Pattyn F, Huyghe A, de Brabander S, de Smedt B (2006) Role of transition zones in marine ice sheet dynamics. J Geophys Res 111(F02004). doi: 10.1029/2005JF000394
  63. Pattyn F, Perichon L, Aschwanden A et al (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere 2:95–108CrossRefGoogle Scholar
  64. Payne A, Holland PR, Shepherd A, Rutt IC, Jenkins A, Joughin I (2007) Numerical modelling of ocean -ice interactions under Pine Island Bay’s ice shelf. J Geophys Res 112(C10019)Google Scholar
  65. Payne AJ, Vieli A, Shepherd AP, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23401CrossRefGoogle Scholar
  66. Pfeffer WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J Geophys Res 112:F03S25. doi: 10.1029/2006JF000590
  67. Pfeffer WT, Harper J, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343CrossRefGoogle Scholar
  68. Phillips T, Rajaram H, Steffen K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys Res Lett 37(L20503). doi: 10.1029/2010GL044397
  69. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–333CrossRefGoogle Scholar
  70. Pralong A, Funk M, Luthi MP (2003) A description of crevasse formation using continuum damage mechanics. Ann Glaciol 37:77–82CrossRefGoogle Scholar
  71. Price SF, Pane AJ, Howat IM, Smith B (2011) Commited sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc Nat Acad Sci (in press)Google Scholar
  72. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975Google Scholar
  73. Reeh N, Thompsen HH, Higgins AK, Weidick A (2001) Sea ice and the stability of north and northeast Greenland floating glaciers. Ann Glaciol 33(1):474–480CrossRefGoogle Scholar
  74. Rignot E, Kanagaratnam P (2006) Changes in velocity structure of the Greenland ice sheet. Science 311:986–990CrossRefGoogle Scholar
  75. Rignot E, Casassa G, Gognineni P, Krabill W, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi: 10.1029/2004GL020697 CrossRefGoogle Scholar
  76. Rignot E, Koppes M, Velinconga I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci 3:187–191CrossRefGoogle Scholar
  77. Rignot E, Veliconga I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea-level rise. Geophys Res Lett 38:L05503. doi: 10.1029/2011GL046583
  78. Roberts D, Long AJ, Schnabel C, Freeman S, Simpson MJR (2008) The deglacial history of southeast sector of the Greenland ice sheet during the Last Glacial Maximum. Q Sci Rev 27:1505–1516CrossRefGoogle Scholar
  79. Sandhaeger H (2003) Numerical study on the influence of fractures and zones of weakness on the flow regime of Larsen Ice Shelf. Report 14, FRISPGoogle Scholar
  80. Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi: 10.1029/2004GL020670 CrossRefGoogle Scholar
  81. Schoof C (2005) The effect of cavitation on glacier sliding. Proc R Soc Lond Ser A 461:609–627CrossRefGoogle Scholar
  82. Schoof C (2007) Ice sheet grounding line dynamics: Steady states, stability and hysteresis. J Geophys Res 112:F03S28. doi: 10.1029/2006JF000664
  83. Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature 468:803–806CrossRefGoogle Scholar
  84. Schoof C, Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q J Mech Appl Math 63(1):73–114CrossRefGoogle Scholar
  85. Seddik H, Greve R, Zwinger T, Gagliardini O (2010) Steady-state simulations of the Greenland ice sheet using a three-dimensional full-Stokes model. Geophys Res Abs 12(EGU2010-8644)Google Scholar
  86. Sohn HG, Jezek KC, Vander Veen CJ (1998) Jakobshavn glacier, West Greenland: 30 years of spaceborne observations. Geophys Res Lett 25:2699–2702CrossRefGoogle Scholar
  87. Stearns LA, Hamilton GS (2007) Rapid volume loss from two East Greenland outlet glaciers quantified using repeat strereo satellite imagery. Geophys Res Lett 34:L05503. doi: 10.1029/2006GL028982 CrossRefGoogle Scholar
  88. Stone EJ, Lunt DJ, Rutt IC, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417CrossRefGoogle Scholar
  89. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in Greenland. Nat Geosci 3:182–186CrossRefGoogle Scholar
  90. Straneo F, Curry RG, Sutherland DA, Hamilton GS, Cenedese C, Vage K, Stearns LA (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat Geosci 4:322–327CrossRefGoogle Scholar
  91. Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469:521–524CrossRefGoogle Scholar
  92. Thoma M, Grosfeld K, Makinson K, Lange MA (2010) Modelling the impact of ocean warming on melting and water masses of ice shelves in the Eastern Weddell Sea. Ocean Dyn 60:479–489CrossRefGoogle Scholar
  93. Thomas RB (2004) Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J Glaciol 50(168):57–66CrossRefGoogle Scholar
  94. Thomas RB, Abdalati W, Frederick E, Krabill WB, Manizade S, Steffen K (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland. J Glaciol 49(165):231–239CrossRefGoogle Scholar
  95. Thomas RB, Frederick E, Krabill W, Manizade S, Martin C (2009) Recent changes on Greenland outlet glaciers. J Glaciol 55(189):147–162CrossRefGoogle Scholar
  96. Thomas RH (1978) The dynamics of marine ice sheets. J Glaciol 24:167–177Google Scholar
  97. Vande Wal RSW, Boot W, Vanden Broeke MR, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemans J (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science 321:111–113CrossRefGoogle Scholar
  98. Vanden Broeke M, Bamber J, Etterna J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velinconga I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986CrossRefGoogle Scholar
  99. Vander Veen CJ (1996) Tidewater calving. J Glaciol 42(141):375–385Google Scholar
  100. Vander Veen CJ (1998) Fracture mechanics approach to penetration of surface crevasses. Cold Reg Sci Technol 27:31–47CrossRefGoogle Scholar
  101. Vander Veen CL, Whillans IM (1996) Model experiments on the evolution and stability of ice streams. Ann Glaciol 23:129–137Google Scholar
  102. Vieli A, Payne AJ (2005) Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res 110:F01003. doi: 10.1029/2004JF000202
  103. Vieli A, Funk M, Blatter H (2000) Tidewater glaciers: frontal flow acceleration and basal sliding. Ann Glaciol 31:217–221CrossRefGoogle Scholar
  104. Vieli A, Funk M, Blatter H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J Glaciol 47(159):595–606CrossRefGoogle Scholar
  105. Vieli A, Jania J, Kolondra L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen. J Glaciol (in press)Google Scholar
  106. Vieli A, Payne AJ, Shepherd A, Du S (2007) Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Plan Res Lett 259(3-4):297–306CrossRefGoogle Scholar
  107. Weertman J (1973) Can a water-filled crevasse reach the bottom surface of a glacier?. IAHS Pub 95:185–188Google Scholar
  108. Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13(67):3–11Google Scholar
  109. Young NE, Briner JP, Stewart HAM, Axford Y, Csatho B, Rood DH, Finkel RC (2011) Response of Jakobshavn Isbrae, Greenland, to Holocene climate change. Geology 39(2):131–134CrossRefGoogle Scholar
  110. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeographyDurham UniversityDurhamUnited Kingdom
  2. 2.Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieZurichSwitzerland
  3. 3.Laboratoire de GlaciologieUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations