Surveys in Geophysics

, Volume 32, Issue 4–5, pp 555–583 | Cite as

Present State and Prospects of Ice Sheet and Glacier Modelling

  • Heinz Blatter
  • Ralf Greve
  • Ayako Abe-Ouchi


Since the late 1970s, numerical modelling has become established as an important technique for the understanding of ice sheet and glacier dynamics, and several models have been developed over the years. Ice sheet models are particularly relevant for predicting the possible response of ice sheets to climate change. Recent observations suggest that ice dynamics could play a crucial role for the contribution of ice sheets to future sea level rise under global warming conditions, and the need for further research into the matter was explicitly stated in the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). In this paper, we review the state of the art and current problems of ice sheet and glacier modelling. An outline of the underlying theory is given, and crucial processes (basal sliding, calving, interaction with the solid Earth) are discussed. We summarise recent progress in the development of ice sheet and glacier system models and their coupling to climate models, and point out directions for future work.


Glacier Ice sheet Numerical modeling 



We thank Prof. Lennart Bengtsson (Director Earth Science, International Space Science Institute, Bern, Switzerland) for the kind invitation to submit this review paper to Surveys in Geophysics. Scientific editor Prof. Johannes Oerlemans (Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands) and two anonymous reviewers provided useful comments for improving the paper. Dr. Tracy Ewen (Department of Geography, University of Zurich, Switzerland) proofread the manuscript.


  1. Abe-Ouchi A, Blatter H (1993) On the initiation of ice sheets. Ann Glaciol 18:203–207Google Scholar
  2. Abe-Ouchi A, Segawa T, Saito F (2007) Climatic conditions for modelling the northern hemisphere ice sheets through the ice age cycle. Clim Past 3:423–438CrossRefGoogle Scholar
  3. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulars, graphs, and mathematical tables. Dover Publications, New YorkGoogle Scholar
  4. Alley RB (1992) Flow-law hypotheses for ice-sheet modeling. J Glaciol 38(129):245–256Google Scholar
  5. Anandakrishnan S, Catania GA, Alley RB, Horgan HJ (2007) Theoretical limitations to englacial velocity calculations. Science 315:1835–1841CrossRefGoogle Scholar
  6. Arthern RJ, Gudmundsson GH (2010) Initialization of ice-sheet forecast viewed as an inverse Robin problem. J Glaciol 56(197):527–533CrossRefGoogle Scholar
  7. Arthern RJ, Hindmarsh RCA (2006) Determining the contribution of Antarctica to sea-level rise using data assimilation methods. Phil Trans R Soc A 364:1841–1865CrossRefGoogle Scholar
  8. Bahr DB, Pfeffer WT, Meier MF (1994) Theoretical limitations to englacial velocity calculations. J Glaciol 40(136):509–518Google Scholar
  9. Benn DI, Hulton NRJ, Mottram R (2007) ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann Glaciol 46:123–130CrossRefGoogle Scholar
  10. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432,
  11. Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J Glaciol 41(138):333–344Google Scholar
  12. Box JE, Bromwich DH, Veenhuis BA, Bai L, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J Clim 19:2783–2800CrossRefGoogle Scholar
  13. Brotchie JF, Silvester R (1969) On crustal flexure. J Geophys Res 74(22):5240–5252CrossRefGoogle Scholar
  14. Bueler E (2008) Lessons from the short history of ice sheet model intercomparison. Cryosphere Discuss 2:399–412CrossRefGoogle Scholar
  15. Bueler E, Brown J (2009) Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J Geophys Res 114:F03008. doi: 10.1029/2008JF001179 CrossRefGoogle Scholar
  16. Bueler E, Kallen-Brown JA, Lingle C (2005) Exact solutions and the verification of numerical models for ice sheets. Poster, EGU General Assembly, Vienna, Austria
  17. Bueler E, Brown J, Lingle C (2006) Verifying thermocoupled ice sheet models (and explaining the ”warm spokes”). Presentation, 13th West Antarctic ice sheet workshop, Pack Forest, Washington
  18. Bueler E, Khroulev C, Aschwanden A, Joughin I, Smith BE (2010) Modeled and observed fast flow in the Greenland ice sheet. Poster, EGU General Assembly, Vienna, Austria
  19. Calov R, Hutter K (1996) The thermomechanical response of the Greenland ice sheet to various climate scenarios. Clim Dyn 12:243–260CrossRefGoogle Scholar
  20. Calov R, Greve R, Abe-Ouchi A, Bueler E, Huybrechts P, Johnson JV, Pattyn F, Pollard D, Ritz C, Saito F, Tarasov L (2010) Results from the ice-sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J Glaciol 56(197):371–383CrossRefGoogle Scholar
  21. Christensen JH, Christensen OB (2007) A summary of PRUDENCE model projection of changes in european climate by the end of theis century. Clim Change 81:7–30CrossRefGoogle Scholar
  22. Clausen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  23. Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th edn. Elsevier, AmsterdamGoogle Scholar
  24. Durand G, Gagliardini O, de Fleurian B, Zwinger T, Le Meur E (2009a) Marine ice sheet dynamics: hysteresis and neutral equilibrium. J Geophys Res 114(F3):F03009. doi: 10.1029/2008JF001170
  25. Durand G, Gagliardini O, Zwinger T, Le Meur E, Hindmarsh RCA (2009b) Full Stokes modeling of marine ice sheets: influence of the grid size. Ann Glaciol 50(52):109–114CrossRefGoogle Scholar
  26. Fowler AC (2001) Modelling the flow of glaciers and ice sheets. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 201–221Google Scholar
  27. Frei C, Calanca P, Schär C, Wanner H, Schädler B, Haeberli W, Appenzeller C, Neu U, Thalmann E, Ritz C, Hohmann R (2007) Die Klimazukunft der Schweiz. In: Klimaänderung und die Schweiz 2050—Erwartete Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft, Beratendes Organ für Fragen der Klimaänderung OcCC, pp 12–16.
  28. Gagliardini O, Gillet-Chaulet F, Montagnat M (2009) A review of anisotropic polar ice models: from crystal to ice-sheet flow models. Low Temp Sci 68(Suppl.):149–166Google Scholar
  29. Gagliardini O, Durand G, Zwinger T, Hindmarsh RCA, Le Meur E (2010) Coupling of ice-shelf melting and buttressing is a key process in ice-sheet dynamics. Geophys Res Lett 37(L14501). doi: 10.1029/2010GL043334
  30. Ganopolski A, Calov R, Claussen M (2010) Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim Past 6:229–244CrossRefGoogle Scholar
  31. Gladstone RM, Lee V, Vieli A, Payne AJ (2009) Grounding line migration in an adaptive mesh ice sheet model. J Geophys Res 115(F04014). doi: 10.1029/2009JF001615
  32. Goldberg DN, Holland DM, Schoof CG (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J Geophys Res 114(F04026). doi: 10.1029/2008JF001227
  33. Goldsby DL, Kohlstedt DL (2001) Superplastic deformation of ice: experimental observations. J Geophys Res 106(B6):11017–11030CrossRefGoogle Scholar
  34. Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10(5):901–918CrossRefGoogle Scholar
  35. Greve R (2000) On the response of the Greenland ice sheet to greenhouse climate change. Clim Change 46(3):289–303CrossRefGoogle Scholar
  36. Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Advances in geophysical and environmental mechanics and mathematics. Springer, BerlinGoogle Scholar
  37. Grosfeld K, Sandhäger H (2004) The evolution of a coupled ice shelf-ocean system under different climate states. Global Planet Change 42:107–132CrossRefGoogle Scholar
  38. Gudmundsson GH (1994a) Convergent glacier flow and perfect sliding over a sinusoidal bed. PhD thesis, ETH Zürich, no. 10711Google Scholar
  39. Gudmundsson GH (1994b) Glacier sliding over sinusoidal bed and the characteristics of creeping flow over bedrock undulations. Mitteilung 130, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH ZürichGoogle Scholar
  40. Gudmundsson GH (1999) A three-dimensional numerical model of the confluence area of unteraargletscher, bernese alps, switzerland. J Glaciol 45(150):219–230CrossRefGoogle Scholar
  41. Gudmundsson GH (2003) Transmission of basal variability to a glacier surface. J Geophys Res 108:B42253. doi: 10.1029/2002JB002107 CrossRefGoogle Scholar
  42. Gudmundsson GH (2008) Analytical analysis of small-amplitude perturbations in the shallow ice stream approximation. Cryosphere Discuss 2:23–74CrossRefGoogle Scholar
  43. Heimbach P, Bugnion V (2009) Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model. Ann Glaciol 50(52):67–80CrossRefGoogle Scholar
  44. Hindmarsh RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J Geophys Res 109:F01,012CrossRefGoogle Scholar
  45. Hindmarsh RCA (2006) Paradoxes and problems with the longitudinal stress approximations used in glacier mechanics. GAMM-Mitt 29(1):52–79Google Scholar
  46. Hindmarsh RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheet: back pressure and grounding line motion. Phil Trans R Soc A 364:1733–1767CrossRefGoogle Scholar
  47. Hock R (1999) A distributed temperature-index ice and snowmelt model including potential direct solar radiation. J Glaciol 45(149):101–111Google Scholar
  48. Hofer M, Mölg T, Marzeion B, Kaser G (2010) Empirical-statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordilliera Blanca, Peru). J Geophys Res D12120. doi: 10.1029/2009JD012556
  49. Hooke RL (2005) Principles of glacier mechanics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Horgan HJ, Anandakrishnan S (2006) Static grounding lines and dynamic ice streams: evidence from the Siple Coast, West Antarctica. Geophys Res Lett 33:L18502CrossRefGoogle Scholar
  51. Hutter K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel Publishing Company, DordrechtGoogle Scholar
  52. Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Clim Dyn 5:79–92Google Scholar
  53. Huybrechts P (1996) Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Ann Glaciol 23:226–236Google Scholar
  54. Huybrechts P, Payne T, the EISMINT Intercomparison Group (1997) The EISMINT benchmarks for testing ice-sheet models. Annals Glaciol 23:1–12Google Scholar
  55. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18Google Scholar
  56. Jenkins A, Bombosch A (1995) Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J Geophys Res 100:6967–6981CrossRefGoogle Scholar
  57. Joughin I, MacAyeal D (2005) Calving of large tabular icebergs from ice rift systems. Geophys Res Lett 32:L02, 501Google Scholar
  58. Joughin I, Howat IM, Fahnestock M, Smith B, Krabill W, Alley RB, Stern H, Truffer M (2008) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res 113:F04,006Google Scholar
  59. Jouvet G (2010) Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers. PhD thesis, Ecole Polytechnique Fédérale de LausanneGoogle Scholar
  60. Jouvet G, Picasso M, Rappaz J, Blatter H (2008) A new algorithm to simulate the dynamics of a glacier: theory and applications. J Glaciol 54(188):801–811CrossRefGoogle Scholar
  61. Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulations of Rhohnegletscher from 1874 to 2100. J Comp Phys 228:6426–6439CrossRefGoogle Scholar
  62. Kachanov LM (1999) Rupture time under creep conditions. Int J Fract 97(1–4):xi–xviii (translation from Izv. Akad. Nauk. SSSR, Itd. Tekh. Nauk. Metall. Topl., 8, 26–31, 1957)Google Scholar
  63. Krajcinovic D (1996) Damage mechanics. Elsevier, New yorkGoogle Scholar
  64. Krimmel RM (2001) Photogrammetric data set, 1957–2000, and bathymetric measurements for Columbia Glacier, Alaska. Water Resour. Invest. Rep. 014089, U.S. Geol. SurvGoogle Scholar
  65. Lambeck K, Johnston P, Nakada M (1990) Holocene glacial rebound and sea-level change in NW Europe. Geophys J Int 103:451–468CrossRefGoogle Scholar
  66. Langdon TG (1996) Transitions in creep behavior. Mater Trans Jpn Inst Metal 37(3):359–362Google Scholar
  67. Le Meur E (1996) Isostatic postglacial rebound over Fennoscandia with a self-gravitating spherical visco-elastic Earth model. Ann Glaciol 23:318–327Google Scholar
  68. Le Meur E, Huybrechts P (1996) A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Ann Glaciol 23:309–317Google Scholar
  69. Le Meur E, Huybrechts P (2001) A model computation of the temporal changes of surface gravity and geoidal signal induced by the evolving Greenland ice sheet. Geophys J Int 145:835–849CrossRefGoogle Scholar
  70. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 337–383.
  71. Lewis EL, Perkin RG (1986) Ice pumps and their rates. J Geophys Res 91(C10):11756–11762CrossRefGoogle Scholar
  72. Lüthi M, Funk M (2000) Dating ice cores from a high Alpine glacier with a flow model for cold firn. Ann Glaciol 31:69–79CrossRefGoogle Scholar
  73. Marguerre K, Woernle HT (1969) Elastic plates. Blaisdell Publishing Company, WalthamGoogle Scholar
  74. Meehl GA, Stocker TF, Collins WD, P F, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845.
  75. Morland LW (1984) Thermomechanical balances of ice sheet flows. Geophys Astrophys Fluid Dyn 29:237–266CrossRefGoogle Scholar
  76. Morland LW (1987) Unconfined ice-shelf flow. In: Veen CJ, Oerlemans J (eds) Dynamics of the West Antarctic ice sheet. D. Reidel Publishing Company, Dordrecht, pp 99–116CrossRefGoogle Scholar
  77. Murray AB (2002) Seeking explanation affects numerical modeling strategies. EOS Trans AGU 83:418–419CrossRefGoogle Scholar
  78. Nick FM, van der Veen CJ, Oerlemans J (2007) Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. J Geophys Res 112:F03S24. doi: 10.1029/2006JF000551 CrossRefGoogle Scholar
  79. Nick FM, van der Veen CJ, Vieli A, Benn DI (2010) A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. J Glaciol 56(199):781–794CrossRefGoogle Scholar
  80. Nøst OA, Foldvik A (1994) A model of ice shelf-ocean interaction with application to the Filchner-Ronne and Ross ice shelves. J Geophys Res 99(C7):14243–14254CrossRefGoogle Scholar
  81. Nye JF (1957) The distribution of stress and velocity in glaciers and ice-sheets. Proc R Soc Lond Ser A 239(1216):113–133CrossRefGoogle Scholar
  82. Ohmura A (2010) Mass balance of glaciers and ice sheets during the observational period and climate change (in japanese). J Geogr Tokyo Geogr Soc 119(3):466–481Google Scholar
  83. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646CrossRefGoogle Scholar
  84. Otero J, Navarro FJ, Martin C, Cuadrado ML, Corcuera MI (2010) A three-dimensional calving model: numerical experiments on Johnsons Glacier, Livingston Island, Antarctica. J Glaciol 56(196):200–214CrossRefGoogle Scholar
  85. Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  86. Pattyn F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J Glaciol 54(185):353–361CrossRefGoogle Scholar
  87. Pattyn F et al (2007) Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). Cryophere 2:95–108. doi: 10.5194/tc-2-95-2008 CrossRefGoogle Scholar
  88. Payne AJ, Baldwin DJ (2000) Analysis of ice-flow instabilities identified in the EISMINT intercomparison exercise. Annals Glaciol 30:204–210CrossRefGoogle Scholar
  89. Payne AJ, Dongelmans PW (1997) Self-organization in the thermomechanical flow of ice sheets. J Geophys Res 102(B6):12219–12233CrossRefGoogle Scholar
  90. Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL, Greve R, Marshall S, Marsiat I, Ritz C, Tarasov L, Thomassen MPA (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J Glaciol 46(153):227–238CrossRefGoogle Scholar
  91. Payne AJ, Vieli A, Shepherd AP, Wingham DJ, Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys Res Lett 31:L23, 401CrossRefGoogle Scholar
  92. Pettit EC, Waddington ED (2003) Ice flow at low deviatoric stress. J Glaciol 49(166):359–369CrossRefGoogle Scholar
  93. Pralong A, Funk M (2005) Dynamic damage model of crevasse opening and application to glacier calving. J Geophys Res 110:B01309. doi: 10.1029/2004JB003104 CrossRefGoogle Scholar
  94. Pralong A, Funk M, Lüthi MP (2003) A description of crevasse formation using continuum damage mechanics. Ann Glaciol 37:77–82CrossRefGoogle Scholar
  95. Pralong A, Hutter K, Funk M (2006) Anisotropic damage mechanics for viscoelastic ice. Cont Mech Thermodyn 17(5):387–408. doi: 10.1007/s00161-005-0002-5 CrossRefGoogle Scholar
  96. Ridley JK, Gregory JM, Huybrechts P, Lowe JA (2009) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn. doi: 10.1007/s00382-009-0646-0
  97. Rignot E, Steffen K (2008) Channelized bottom melting and stability of floating ice shelves. Geophys Res Lett 35:L02,503Google Scholar
  98. Ritz C (1987) Time dependent boundary conditions for calculation of temperature fields in ice sheets. In: Waddington ED, Walder JS (eds) The physical basis of ice sheet modelling. IAHS Publication No. 170, IAHS Press, Wallingford, pp 207–216Google Scholar
  99. Ritz C, Fabre A, Letréguilly A (1997) Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle. Clim Dyn 13(1):11–24CrossRefGoogle Scholar
  100. Ritz C, Rommelaere V, Dumas C (2001) Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostik region. J Geophys Res 106(D23):31943–31964CrossRefGoogle Scholar
  101. Rogozhina I, Martinec Z, Hagedorn JM, Thomas M (2011) On the long-term memory of the Greenland ice sheet. J Geophys Res 116:F01011. doi: 10.1029/2010JF001787 CrossRefGoogle Scholar
  102. Saito F, Abe-Ouchi A (2004) Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet model. Ann Glaciol 39:433–438CrossRefGoogle Scholar
  103. Saito F, Abe-Ouchi A, Blatter H (2006) European ice sheet modelling initiative (EISMINT) model intercomparison experiments with first order mechanics. J Geophys Res 111:F02012CrossRefGoogle Scholar
  104. Scambos T, Fricker HA, Liu C, Bohlander J, Fastook J, Sargent A, Massom R, Wu A (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-up. Earth Planet Sci Lett 280:51–60CrossRefGoogle Scholar
  105. Schneeberger C, Albrecht O, Blatter H, Wild M, Hock R (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study on Storglaciären, northern Sweden. Clim Dyn 17(11):825–834CrossRefGoogle Scholar
  106. Schneeberger C, Blatter H, Abe-Ouchi A, Wild M (2003) Modelling changes in the mass balance of glaciers of the northern hemisphere for a transient 2xCO2 scenario. J Hydrol 282(1-4):145–163CrossRefGoogle Scholar
  107. Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112:F03S28. doi: 10.1029/2006JF000664 CrossRefGoogle Scholar
  108. Schoof C, Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow. Q J Mech Appl Math 63(1):73–114. doi: 10.1093/qjmam/hbp025 CrossRefGoogle Scholar
  109. Smedsrud LH, Jenkins A (2004) Frazil ice formation in an ice shelf water plume. J Geophys Res 109:C03, 025CrossRefGoogle Scholar
  110. Tarasov L, Peltier WR (2002) Greenland glacial history and local geodynamic consequences. Geophys J Int 150(1):198–229CrossRefGoogle Scholar
  111. Thoma M, Wolf D (1999) Bestimmung der Mantelviskosität aus Beobachtungen der Landhebung und Schwere in Fennoskandien. Scientific Technical Report STR99/02, GeoForschungsZentrum Potsdam, GermanyGoogle Scholar
  112. Thompson DE (1995) Verification, validation, and solution quality in computational physics: Cfd methods applied to ice sheet physics. Tech. rep., NASA/TM-2005-213453, NASA, Ames Research CenterGoogle Scholar
  113. Truffer M (2004) The basal speed of valley glaciers: an inverse approach. J Glaciol 50(169):236–242CrossRefGoogle Scholar
  114. Vander Veen CJ (1996) Tidewater calving. J Glaciol 42:375–385Google Scholar
  115. Verbitsky M (2002) Siple coast ice streams in a General Antarctic ice sheet model. J Clim 18:2194–2198CrossRefGoogle Scholar
  116. Vieli A, Payne AJ (2003) Application of control methods for modelling the flow of Pine Island Glacier, West Antarctica. Ann Glaciol 36:197–204CrossRefGoogle Scholar
  117. Vieli A, Payne AJ (2005) Assessing the ability of numerical ice sheet models to simulate grounding line migration. J Geophys Res 110:1815–1839. doi: 10.1029/2004JF000202 CrossRefGoogle Scholar
  118. Vieli A, Funk M, Blatter H (2000) Tidewater glaciers: frontal flow acceleration and basal sliding. Ann Glaciol 31:217–221CrossRefGoogle Scholar
  119. Vieli A, Funk M, Blatter H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J Glaciol 47(159):595–606CrossRefGoogle Scholar
  120. Vieli A, Jania J, Kolondra L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J Glaciol 48(163):592–600CrossRefGoogle Scholar
  121. Vieli A, Payne AJ, Du Z, Shepherd A (2006) Numerical modelling and data assimilation of the Larson B ice shelf, Antarctic Peninsula. Phil Trans R Soc A 364:F01003. doi: 10.1098/rsta.2006.1800 CrossRefGoogle Scholar
  122. Vizcaíno M, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Climate Dyn 31(6):665–690. doi: 10.1007/s00382-008-0369-7 CrossRefGoogle Scholar
  123. Walker RT, Dupont TK, Parizek BR, Alley RB (2008) Effect of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys Res Lett 35(L17503). doi: 10.1029/2008GL034947
  124. Walker RT, Dupont TK, Holland DM, Parizek BR, Alley RB (2009) Initial effects of oceanic warming on a coupled ocean-ice shelf-ice stream system. Earth Planet Sci Lett 287:483–487CrossRefGoogle Scholar
  125. Weertman J (1957) On the sliding of glaciers. J Glaciol 3(21):33–38Google Scholar
  126. Weertman J (1964) The theory of glacier sliding. J Glaciol 5(39):287–303Google Scholar
  127. Weertman J (1971) In defence of a simple model of glacier sliding. J Geophys Res 76(26):6485–6487CrossRefGoogle Scholar
  128. Weis M, Greve R, Hutter K (1999) Theory of shallow ice shelves. Continuum Mech Thermodyn 11(1):15–50CrossRefGoogle Scholar
  129. Zwinger T, Moore JC (2009) Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard. Cryosphere 3:217–229CrossRefGoogle Scholar
  130. Zwinger T, Greve R, Gagliardini O, Shiraiwa T, Lyly M (2007) A full-Stokes thermo-mechanical model for firn and ice applied to the Gorshkov crate glacier, Kamchatka. Ann Glaciol 45:29–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate Science, ETH ZurichZurichSwitzerland
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations