Surveys in Geophysics

, Volume 32, Issue 6, pp 857–873 | Cite as

Integrating Hydrogeological and Geophysical Methods for the Characterization of a Deltaic Aquifer System

  • Ester Falgàs
  • Juanjo Ledo
  • Beatriz Benjumea
  • Pilar Queralt
  • Alex Marcuello
  • Teresa Teixidó
  • Anna Martí
Article

Abstract

Groundwater management needs detailed aquifer characterization, especially in semiarid costal aquifer systems that are under hydrological pressure. Our study area is in the Tordera delta, northeastern coast of Spain, where a detrital fluvio-deltaic aquifer system has been developed above granitic basement. The main purpose of this study is to characterize the complex lithological structure and the seawater intrusion state by combining hydrological information, audiomagnetotelluric (AMT) and seismic reflection and refraction models. This allowed us to provide spatially continuous information about aquifer properties and processes. Thus, we have determined the thickness and continuity of the aquifer units, as well as the morphology and depth to the basement. The models revealed that the main seawater intrusion main path is found in the western deltaic area that coincides with an existing buried paleochannel. This new result explains the anomalously high chlorine concentrations observed in the deep semiconfined aquifer more than 1,500 m inland.

Keywords

Hydrogeophysics Audiomagnetotelluric Seismic Saline intrusion 

Notes

Acknowledgment

This research was partially supported by Project CGL2009-07604.

References

  1. ACA (2004a) Control de Recursos hídrics al tram baix de la Tordera. Període d’estudi: 15/07/2001-30/09/2003. On line at: http://mediambient.gencat.net/aca/ca//mediaigues_subterranies/, Spain
  2. ACA (2004b) Salinity net control. On line at: http://mediambient.gencat.net/aca/ca//medi/aigues_subterranies/resultats/, Spain
  3. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Mining Metall Eng/Petroleum Div 146(1942):54–62Google Scholar
  4. Arranz D, IIMI M, Casas A, Carmona JM, Viladevall M, Font X, Lazaro R, Tapias JC, Pinto V, Rivero L (2004) Evolución de la intrusión salina en el delta del Tordera utilizando FDEM. VI Congreso Geológico de la Sociedad Geológica de España, Geo-Temas 6(4), Zaragoza, SpainGoogle Scholar
  5. Bedrosian PA, Maercklin N, Weckmann U, Bartov Y, Ryberg T, Ritter O (2007) Lithology-derived structure classification from the joint interpretation of magnetotelluric and seismic models. Geophys J Int 170:737–748CrossRefGoogle Scholar
  6. Choudhury K, Saha DK (2004) Integrated geophysical and chemical study of saline water intrusion. Ground Water 42(5):671–677CrossRefGoogle Scholar
  7. Enrique P (1985) La associación plutónica tardi-herciniana del macizo del Montnegre, Catalanides septentrionals (Barcelona). Ph.D Thesis, Universitat de Barcelona, SpainGoogle Scholar
  8. Falgàs E, Ledo J, Teixidó T, Gabàs A, Ribera F, Arango C, Queralt P, Plata JL, Rubio FM, Peña JA, Martí A, Marcuello A (2005) Geophysical characterization of a Mediterranean coastal aqüífer: the baixa Tordera fluvio-deltaic aqüífer unit (Barcelona, NE Spain). Groundwater and saline intrusion, selected papers from the 18th Saltwater Intrusion Meeting. Publicaciones del Instituto Geológico y Minero de España. Serie: Hidrogeología y aguas subterráneas no 15, pp 395–404, Cartagena, SpainGoogle Scholar
  9. Falgàs E, Ledo J, Marcuello A, Queralt P (2009) Monitoring freshwater-seawater interface dynamics with audiomagnetotelluric data. Near Surf Geophys 7:391–399Google Scholar
  10. Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30:1658. doi: 10.1029/2003GL017370 CrossRefGoogle Scholar
  11. Gallardo LA, Meju MA (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J Geophys Res Solid Earth 109:B03311. doi: 10.1029/02003JB002716
  12. Gallardo LA, Meju MA (2007) Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophys J Int 169:1261–1272CrossRefGoogle Scholar
  13. Gebrande H, Miller H (1985) Refraktionsseismik (in German). Angewandte Geowissenschaften II. Ferdinand Enke. F. Bender, Stuttgart, pp 226–260. ISBN 3-432-91021-5Google Scholar
  14. Geometrics (2000) Operation Manual for Stratagem systems running IMAGEM. Ver.2.16Google Scholar
  15. Gregory KJ, Starkel L, Barker VR (eds) (1995) Global continental palaeohydrology. Wiley, ChichesterGoogle Scholar
  16. Guérin R, Descloitres M, Coudrain A, Talbi A, Gallaire R (2001) Gephysical surveys for identifying saline groundwater in the semi-arid region of the central Altiplano, Bolivia. Hydrol Process 15:3287–3301CrossRefGoogle Scholar
  17. Held R, Attinger S, Kinzelbach W (2005) Homogenization and effective parameters for the Henry problem in heterogeneous formations. Water Resour Res 41:W11420. doi: 10.1029/2004WR003674
  18. Himi M, Navarro JV, Sabadía JA, Casas A (2000) Delimitación de la intrusión salina en el delta del río Tordera por métodos electromagnéticos. Technical report, Actualidad de las Técnicas Geofísicas Aplicadas en Hidrogeología, IGME 2000Google Scholar
  19. Infante V, Gallardo LA, Montalvo-Arrieta JC, Navarro de León I (2010) Lithological classification assisted by the joint inversion of electrical and seismic data at a control site in northeast Mexico. J Appl Geophys 70:93–102CrossRefGoogle Scholar
  20. Kafri U, Goldman M (2005) The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. J Appl Geophys 57(3):167–178CrossRefGoogle Scholar
  21. Krivochieva S, Chouteau M (2003) Integrating TDEM and MT methods for characterization and delineation of the Santa Catarina aquifer (Chalco Sub-Basin, Mexico). J Appl Geophys 52(1):23–43CrossRefGoogle Scholar
  22. Ledo J (2006) 2D versus 3D magnetotelluric data interpretation. Surv Geophys 27:111–148. doi: 10.1007/s10712-006-0002-4 CrossRefGoogle Scholar
  23. Lesmes DP, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Chap. 4. Springer, Dordrecht, pp 87–128CrossRefGoogle Scholar
  24. Linde N, Binley A, Tryggvason A, Pedersen LB, Revil A (2007) Improved hydrogeophysical characterization using joint inversion of crosshole electrical resistance and ground penetrating radar traveltime data. Water Resour Res 42, W12404. doi: 10.1029/2006ER005131
  25. Linde N, Pedersen LB (2004a) Evidence of electrical anisotropy in limestone formations using the RMT technique. Geophysics 69:909–916. doi: 10.1190/1.1778234 CrossRefGoogle Scholar
  26. Linde N, Pedersen LB (2004b) Characterization of a fractured granite using radiomagnetotelluric (RMT) data. Geophysics 69:1155–1165. doi: 10.1190/1.1801933 CrossRefGoogle Scholar
  27. Martí A, Queralt P, Roca E (2004) Geoelectric dimensionality in complex geological areas: application to the Spanish Betic Chain. Geophys J Int 157:961–974CrossRefGoogle Scholar
  28. Meju MA (2000) Environmental geophysics: tasks ahead. J Appl Geophys 44:63–65CrossRefGoogle Scholar
  29. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205CrossRefGoogle Scholar
  30. Meju MA, Gallardo L, Mohamed AK (2003) Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophys Res Lett 30(7):1373. doi: 10.1029/2002GL016048 CrossRefGoogle Scholar
  31. Mota R, Monteiro dos Santos F (2006) 2D sections of porosity and water saturation percent from combined resistivity and seismic surveys for hydrogeologic studies. Lead Edge 25:735–737CrossRefGoogle Scholar
  32. Pedersen LB, Engels M (2005) Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics. doi: 10.1190/1.1897032
  33. Pedersen LB, Bastani M, Dynesius L (2005) Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques. Geophysics 70:G8–G15. doi: 10.1190/1.1852774 CrossRefGoogle Scholar
  34. Porebski SJ, Steel RL (2006) Deltas and sea-level change. J Sediment Res 76(3):390–403CrossRefGoogle Scholar
  35. Purvance DT, Andricevic R (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913CrossRefGoogle Scholar
  36. Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater—freshwater relationships in groundwater systems—a historical perspective. J Hydrol 80:125–160CrossRefGoogle Scholar
  37. Rohdewald SR (1999) RayfractTM (version 2.64), Rayfract manual. Intelligent Resources IncGoogle Scholar
  38. Roth M, Holliger K, Green AG (1998) Guided waves in nearsurface seismic surveys. Geophys Res Lett 25:1071–1074CrossRefGoogle Scholar
  39. Rubin Y, Hubbard S (2005) Hydrogeophysics. Water Sci Technol, vol 50, 521 p (Springer)Google Scholar
  40. Schuster GT, Quintus-Bosz A (1993) Wavepath eikonal traveltime inversion: theory. Geophysics 58:1314–1323CrossRefGoogle Scholar
  41. Schwinn W, Tezkan B (1997) 1D joint inversion of radiomagnetotelluric (RMT) and transient electromagnetic (TEM) data; an application for groundwater prospection in Denmark. 3rd EEGS, ÅrhusGoogle Scholar
  42. Serra J, Valois X, Parra D (2006) Estructura del prodelta de la Tordera (costa del Maresme, no Mediterráneo) a partir del análisis sísmico de alta resolución. Geogaceta 41:211–214Google Scholar
  43. Sheriff RE, Geldart LP (1995) Exploration seismology. Cambridge University Press, CambridgeGoogle Scholar
  44. Shevnin V, Delgado-Rodríguez O, Mousatov A, Ryjov A (2006) Estimation of hydraulic conductivity on clay content in soil determined from resistivity data. Geofísica Internacional 45(3):195–207Google Scholar
  45. Siripunvaraporn W, Egbert G (2000) An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics 65(3):791–803CrossRefGoogle Scholar
  46. Skinner D, Heinson G (2004) A comparison of electrical and electromagnetic methods for the detection of hydraulic pathways in a fractured rock aquifer, Clare Valley. South Aust Hydrogeol J 12:576–590CrossRefGoogle Scholar
  47. Slater L, Lesmes DP (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38:1213CrossRefGoogle Scholar
  48. Teixidó T (2000) Caracterització del subsòl mitjançant sísmica de reflexió d’alta resolució. Ph.D Thesis, Universitat de Barcelona, SpainGoogle Scholar
  49. Teixidó T (2001) Testificació del sondeig Malgrat-1 del delta de la Tordera. Informe GA-174 de l’Institut Geològic de CatalunyaGoogle Scholar
  50. Tryggvason A, Linde N (2006) Local earthquake (LE) tomography with joint inversión for P- and S-wave velocities using structural constraints. Geophys Res Lett 33:L07303. doi: 10.1029/02005GL025485 CrossRefGoogle Scholar
  51. Unsworth MJ, Lu X, Watts MD (2000) AMT exploration at Sellafield: characterization of a potential radioactive waste disposal site. Geophysics 65:1070–1079CrossRefGoogle Scholar
  52. Vozoff K (1972) The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37:98–141CrossRefGoogle Scholar
  53. Weaver JT, Agarwal AK, Lilley FEM (2000) Characterisation of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141:321–336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ester Falgàs
    • 1
  • Juanjo Ledo
    • 1
  • Beatriz Benjumea
    • 2
  • Pilar Queralt
    • 1
  • Alex Marcuello
    • 1
  • Teresa Teixidó
    • 3
  • Anna Martí
    • 1
  1. 1.Departament de Geodinàmica i GeofísicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut Geològic de CatalunyaBarcelonaSpain
  3. 3.Instituto Andaluz de GeofísicaUniversidad de GranadaGranadaSpain

Personalised recommendations