Surveys in Geophysics

, Volume 32, Issue 4–5, pp 507–518 | Cite as

A Downscaling Approach Toward High-Resolution Surface Mass Balance Over Antarctica

  • Hubert Gallée
  • Cécile Agosta
  • Luc Gential
  • Vincent Favier
  • Gerhard Krinner


The Antarctic ice sheet surface mass balance shows high spatial variability over the coastal area. As state-of-the-art climate models usually require coarse resolutions to keep computational costs to a moderate level, they miss some local features that can be captured by field measurements. The downscaling approach adopted here consists of using a cascade of atmospheric models from large scale to meso-γ scale. A regional climate model (Modèle Atmosphérique Régional) forced by meteorological reanalyses provides a diagnostic physically-based rain- and snowfall downscaling model with meteorological fields at the regional scale. Although the parameterizations invoked by the downscaling model are fairly simple, the knowledge of small-scale topography significantly improves the representation of spatial variability of precipitation and therefore that of the surface mass balance. Model evaluation is carried out with the help of shallow firn cores and snow height measurements provided by automatic weather stations. Although downscaling of blowing snow still needs to be implemented in the model, the net accumulation gradient across Law Dome summit is shown to be induced mostly by orographic effects on precipitation.


Net accumulation Downscaling Antarctica Law Dome 



We acknowledge the ice2sea project, funded by the European Commission’s 7th Framework Programme through grant number 226375, ice2sea manuscript number 30. The MAR simulations were run on CNRS/IDRIS computers.


  1. Barstad I, Smith RB (2005) Evaluation of orographic precipitation model. J Hydrometeor 6:85–99CrossRefGoogle Scholar
  2. Brasseur O, Gallée H, Creutin J-D, Lebel T, Marbaix P (2002) High resolution simulations of precipitation over the Alps with the perspective of coupling to hydrological models. Adv Global Change Res 10:75–100. M. Beniston, EdGoogle Scholar
  3. Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 20:149–168CrossRefGoogle Scholar
  4. Bromwich DH, Guo Z, Bai L, Chen Q (2004) Modeled antarctic precipitation. Part I: spatial and temporal variability. J Climate 17:427–447CrossRefGoogle Scholar
  5. Collier CG (1975) A representation of the effects of topography on surface rainfall within moving baroclinic disturbances. Quart J R Met Soc 101:407–422Google Scholar
  6. Durran DR, Klemp JB (1982) On the effects of moisture on the brunt-Väisälä frequency. J Atmos Sci 39:2152–2158CrossRefGoogle Scholar
  7. Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:803–813CrossRefGoogle Scholar
  8. Funk C, Michaelsen J (2004) A simplified diagnostic model of orographic rainfall for enhancing satellite-based rainfall estimates in data-poor regions. J Appl Meteorol 43:1366–1378CrossRefGoogle Scholar
  9. Gallée H, Schayes G (1994) Development of a three-dimensional Meso-gamma primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122:671–685CrossRefGoogle Scholar
  10. Gallée H, Peyaud V, Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model. Ann Glaciol 41:17–22CrossRefGoogle Scholar
  11. Goodwin ID, de Angelis M, Pook M, Young NW (2003) Snow accumulation variability in Wilkes Land, East Antarctica, and the relationship to atmospheric ridging in the 130°–170°E region since 1930. J Geophys Res 108:4673CrossRefGoogle Scholar
  12. Goyette S, Laprise JPR (1996) Numerical investigation with a physically based regional interpolator for off-line downscaling of GCMs: FIZR. J Climate 9:3464–3495CrossRefGoogle Scholar
  13. Guo Z, Bromwich DH, Hines KM (2004) Modeled antarctic precipitation. Part II: ENSO modulation over West Antarctica. J Climate 17:448–465CrossRefGoogle Scholar
  14. Krinner G, Guicherd B, Ox K, Genthon C, Magand O (2006) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn 28:215–230CrossRefGoogle Scholar
  15. Kuligowski RJ, Barros AP (1999) High-resolution short-term quantitative precipitation forecasting in mountainous regions using a nested model. J Geophys Res 194:31553–31564CrossRefGoogle Scholar
  16. Liu H, Jezek K, Li B, Zhao Z (2001) Radarsat Antarctic Mapping Project digital elevation model version 2. National Snow and Ice Data Center. Digital media, Boulder, COGoogle Scholar
  17. McMorrow AJ, Curran MAJ, van Ommen TD, Morgan V, Pook MJ, Allison I (2001) Intercomparison of firn core and meteorological data. Antarct Sci 13:329–337CrossRefGoogle Scholar
  18. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  19. Monaghan AJ, Bromwich DH, Fogt RL, Wang S-H, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313(5788):827–831. doi: 10.1126/science.1128243 CrossRefGoogle Scholar
  20. Sinclair MR (1994) A diagnostic model for estimating orographic precipitation. J Appl Meteorol 33:1163–1175CrossRefGoogle Scholar
  21. Smith RB (2002) Stratified airflow over topography. Environmental stratified flows. In: Grimshaw R (ed) Topics in environmental fluid mechanics, vol 3. Kluwer, The Netherlands, pp 119–159Google Scholar
  22. van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111:D11104. doi: 10.1029/2005JD006495
  23. van den Broeke M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys Res Lett 32:L12815. doi: 10.1029/2005GL023247
  24. van Ommen TD, Morgan V, Curran MAJ (2004) Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica. Ann Glaciol 39:359–365CrossRefGoogle Scholar
  25. Wild M, Calanca P, Scherrer SC, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J Geophys Res 108:4165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hubert Gallée
    • 1
  • Cécile Agosta
    • 1
  • Luc Gential
    • 1
  • Vincent Favier
    • 1
  • Gerhard Krinner
    • 1
  1. 1.UJF-Grenoble 1/CNRS, LGGE UMR 5183Saint-Martin-d’Hères CedexFrance

Personalised recommendations