Surveys in Geophysics

, Volume 32, Issue 4–5, pp 537–554 | Cite as

Observed Mass Balance of Mountain Glaciers and Greenland Ice Sheet in the 20th Century and the Present Trends



Glacier mass balance and secular changes in mountain glaciers and ice caps are evaluated from the annual net balance of 137 glaciers from 17 glacierized regions of the world. Further, the winter and summer balances for 35 glaciers in 11 glacierized regions are analyzed. The global means are calculated by weighting glacier and regional surface areas. The area-weighted global mean net balance for the period 1960–2000 is −270 ± 34 mm a−1 w.e. (water equivalent, in mm per year) or (−149 ± 19 km3 a−1 w.e.), with a winter balance of 890 ± 24 mm a−1 w.e. (490 ± 13 km3 a−1 w.e.) and a summer balance of −1,175 ± 24 mm a−1 w.e. (−647 ± 13 km3 a−1 w.e.). The linear-fitted global net balance is accelerating at a rate of −9 ± 2.1 mm a−2. The main driving force behind this change is the summer balance with an acceleration of −10 ± 2.0 mm a−2. The decadal balance, however, shows significant fluctuations: summer melt reached its peak around 1945, followed by a decrease. The negative trend in the annual net balance is interrupted by a period of stagnation from 1960s to 1980s. Some regions experienced a period of positive net balance during this time, for example, Europe. The balance has become strongly negative since the early 1990s. These decadal fluctuations correspond to periods of global dimming (for smaller melt) and global brightening (for larger melt). The total radiation at the surface changed as a result of an imbalance between steadily increasing greenhouse gases and fluctuating aerosol emissions. The mass balance of the Greenland ice sheet and the surrounding small glaciers, averaged for the period of 1950–2000, is negative at −74 ± 10 mm a−1 w.e. (−128 ± 18 km3 a−1 w.e.) with an accumulation of 297 ± 33 mm a−1 w.e. (519 ± 58 km3 a−1 w.e.), melt ablation −169 ± 18 mm a−1 w.e. (−296 ± 31 km3 a−1 w.e.), calving ablation −181 ± 19 mm a−1 w.e. (−316 ± 33 km3 a−1 w.e.) and the bottom melt-21 ± 2 mm a−1 w.e. (−35 ± 4 km3 a−1 w.e.). Almost half (−60 ± 3 km3 a−1) of the net mass loss comes from mountain glaciers and ice caps around the ice sheet. At present, it is difficult to detect any statistically significant trends for these components. The total mass balance of the Antarctic ice sheet is considered to be too premature to evaluate. The estimated sea-level contributions in the twentieth Century are 5.7 ± 0.5 cm by mountain glaciers and ice caps outside Antarctica, 1.9 ± 0.5 cm by the Greenland ice sheet, and 2 cm by ocean thermal expansion. The difference of 7 cm between these components and the estimated value with tide-gage networks (17 cm) must result from other sources such as the mass balance of glaciers of Antarctica, especially small glaciers separated from the ice sheet.


Mass balance Greenland Mountain glaciers Trends 



The author is indebted to the following colleagues for acquiring pre-publication mass balance data: Miguel Arenillas of Ingeniería 75, S.A., Andreas Bauder and Martin Funk of E.T.H. Zurich, Roger Braithwaite of the University of Manchester, Ludwig Braun of Bavarian Academy of Sciences, Graham Cogley of the University of Trent, Jon Ove Hagen of the University of Oslo, Peter Jansson of Stockholm University, Giovanni Kappenberger of Swiss Federal Office of Meteorology and Climatology, Bjarne Kjølloen of the Norwegian Water Resources and Energy Directorate, Jack Kohler of the Norwegian Polar Institute, Michael Kuhn and Andrea Fischer of the University of Innsbruck, Hans Müller of Tergeso A.G., Wolfgang Schöner of Central Institute for Meteorology and Geodynamics, Christian Vincent of the University of Grenoble, and Michael Zemp of the University of Zurich. The author received valuable help in computational methods for error estimations from Hans-Rudolf Künsch of the Department of Mathematics at E.T.H. Zurich.


  1. Abdalati W, Steffen K (2001) Greenland ice sheet melt extent: 1979–1999. J Geophys Res 106(D24):33983–33988Google Scholar
  2. Anklin M (1991) CO2-analyse an einem Eisbohrkern aus Zentralgrönland und Bestimmung von Niederschlagsraten entlang einer Fliesslinie mittels H2O2-analyse. Unpublished Lizentialarbeit, Division of Climate and Environment Physics, Institute of Physics, University of BerneGoogle Scholar
  3. Anklin M, Bales RC, Mosley-Thompson E, Steffen K (1998) Annual accumulation at two sites in northwest Greenland during recent centuries. J Geophys Res 103(D22):28775–28783CrossRefGoogle Scholar
  4. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20355–20362Google Scholar
  5. Bales RC, Guo Q, Shen D, McConnell JR, Du G, Burkhart JF, Spikes VB, Hanna E, Cappelen J (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J Geophys Res 114:D06116. doi:10.1029/2008JD011208 CrossRefGoogle Scholar
  6. Bamber JA, Payne AJ (eds) (2004) Mass balance of the cryosphere. Cambridge University Press, CambridgeGoogle Scholar
  7. Benson CS (1961) Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. Folia Geogr Dan 9:13–37Google Scholar
  8. Benson CS (1962) Stratigraphic studies in the snow and firn of the Greenland Ice sheet. Research Report, No. 70, Snow, Ice, and Permafrost Research Establishment (SIPRE)Google Scholar
  9. Box JE, Bromwich DH, Veenhuis LS, Bai L, Stroeve JC, Rogers JC, Steffen K, Haran T, Wang S (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J Clim 19:2783–2800Google Scholar
  10. Calanca P, Gilgen H, Ekholm S, Ohmura A (2000) Gridded temperature and accumulation distributions for use in cryospheric models. Ann Glaciol 31:118–120CrossRefGoogle Scholar
  11. Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since 1870s. In: Lang H, Musy A (eds) Hydrology in mountainous regions I. IAHS Publ., No. 193, pp 127–135Google Scholar
  12. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dynamics 16:661–676Google Scholar
  13. Dyurgerov M (2002) Glacier mass balance and regime: data of measurements and analysis. Occasional Paper No.55, Institute of Arctic and Alpine Research, Univ. Colorado, BoulderGoogle Scholar
  14. Dyurgerov M, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Occasional Paper58, Occasional Paper 58, Institute of Arctic and Alpine Research, University of Colorado, Boulder, COGoogle Scholar
  15. Ekholm S (1996) A full coverage, high resolution, topographic model of Greenland computed from a variety of digital elevation data. J Geophys Res 101(B10):21961–21972CrossRefGoogle Scholar
  16. Funk M (1985) Räumliche Verteilung der Massenbilanz auf dem Rhonegletscher und Ihre Beziehung zu Klimaelementen. Geograph. Inst., Eidgenössische Techn. Hochsch. Zürich, Zürcher Geographische Schriften, p 24Google Scholar
  17. Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110:D13108. doi:10.1029/2004JD005641
  18. Haug T, Rolsrad C, Elvehøy H, Jackson M, Maalen-Johansen I (2009) Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968–1985 and 1985–2002. Ann Glaciol 50(50):119–125Google Scholar
  19. Higgins AK (1991) North Greenland glacier velocities and calf ice production. Polarforschung 60(1):1–23 Google Scholar
  20. Hock R, de Woul M, Radic V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07501. doi:10.1029/2008GL037020
  21. Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36:L23501. doi:10.1029/2009GL040789,2009 CrossRefGoogle Scholar
  22. Kjøllmoen B (ed) (2010) Glaciological investigations in Norway 2009. Norwegian water resources and energy directorate, Oslo, pp. 94Google Scholar
  23. Krabill W, Abdalati W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2000) Greenland ice sheet: high-elevation balance and peripheral thinning. Science 289:428–430CrossRefGoogle Scholar
  24. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  25. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592
  26. Meier MF (1984) Contribution of small glaciers to global sea level. Sci 226:1418–1421Google Scholar
  27. Meier M, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominates eustatic sea-level rise in the 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  28. Müller F (1962) Zonation in the accumulation area of the glaciers of Axel Heiberg Island, N.W.T. Can J Glaciol 4:302–313Google Scholar
  29. Ohmura A (1987) New temperature distribution maps for Greenland. Zeitschr Gletscherk Glazialgeol 23:1–45Google Scholar
  30. Ohmura A (2001) Physical basis for the temperature/melt-index method. J Appl Meteor 40:753–761CrossRefGoogle Scholar
  31. Ohmura A (2004) Cryosphere during the twentieth century. Geophys Monogr 150:239–257 (Am Geophys Union)Google Scholar
  32. Ohmura A (2006) Observed long-term variations of solar irradiance at the earth’s surface. Space Sci Rev. doi:10.1007/s11214-006-9050-9 (special edition)
  33. Ohmura A (2009a) Completing the world glacier inventory. Ann Glaciol 50(53):144–148CrossRefGoogle Scholar
  34. Ohmura A (2009b) Observed decadal variations in surface solar radiation and their causes. J Geophys Res 114(D00D13). doi:10.1029/2008JD011290
  35. Ohmura A, Lang H (1989) Secular variation of global radiation in Europe. In: Lenoble J, Geleyn J-F (eds) IRS’88: current problems in atmospheric radiation. A. Deepak Publ., Hampton, pp 298–301Google Scholar
  36. Ohmura A, Reeh N (1991) New precipitation and accumulation distribution maps for Greenland. J Glacial 37:140–148Google Scholar
  37. Ohmura A, Wild M, Bengtsson L (1996) A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J Clim 9:2124–2135CrossRefGoogle Scholar
  38. Ohmura A, Calanca P, Wild M, Anklin M (1999) Precipitation, accumulation and mass balance of the Greenland ice sheet. Zeitschr Gletscherk Glazialgeol 35:1–20Google Scholar
  39. Ohmura A, Bauder A, Müller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46:367–374CrossRefGoogle Scholar
  40. Radic V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115. doi:10.1029/2009JF001373
  41. Reeh N (1994) Calving from Greenland glaciers: observations, balance estimates of calving rates, calving laws. In: Reeh N (ed) Workshop on the calving rate of West Greenland glaciers in response to climate change, 13–15 September 1993. Copenhagen, Danish Polar Center, pp 85–102Google Scholar
  42. Reeh N, Olesen OB (1986) Velocity measurements on Daugaard-Jensen Gletscher, Scoresby Sund. East Greenland. Ann Glaciol 8:146–150Google Scholar
  43. Reeh N, Mayer Christoph, Miller H, Thomsen HH, Weidick A (1999) Present and past climate control on fjord glaciations in Greenland: implications for IRD-deposition in the sea. Geophys Res Lett 26:1039–1042CrossRefGoogle Scholar
  44. Rignot E, Box JE, Burgess E, Hanna E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophy Res Lett 35. doi:10.1029/2008GL035417
  45. Seckel H (1977) Höhenänderungen im grönländischen Inlandeis zwischen 1959 und 1968. EGIG 1967–1968 3(5):187, 194 (Medd. Gronland)Google Scholar
  46. Sevruk B (1986) Correction of precipitation measurements: Swiss experience. In: Sevruk B (ed) Correction of precipitation measurements. Zürcher Geographische Schriften, No. 23, pp 187–196Google Scholar
  47. Tober M (1986) Die deutschen geodätischen Arbeiten im Rahmen der internationalen glaziologischen Grönland Expedition (EGIG) 1959–1974. Deutsche Geodätische Kommission Reihe B, Nr. 281, Bayerische Akademie der Wissenschaften, München, pp 63–84Google Scholar
  48. Weidick A (1995) Greenland. Satellite image atlas of glaciers of the world, professional paper, 1386-C, U.S. Geol. Survey, U.S. Gov. Printing Office, Washington, DCGoogle Scholar
  49. Wild M, Calanca P, Scherrer SC, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J Geophys Res 108(D5):4165, ACL 5-1-10Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate ScienceSwiss Federal Institute of Technology (E.T.H.)ZürichSwitzerland

Personalised recommendations