Surveys in Geophysics

, Volume 32, Issue 3, pp 197–253

A Review of Higher Order Ionospheric Refraction Effects on Dual Frequency GPS

  • Elizabeth J. Petrie
  • Manuel Hernández-Pajares
  • Paolo Spalla
  • Philip Moore
  • Matt A. King


Higher order ionospheric effects are increasingly relevant as precision requirements on GPS data and products increase. The refractive index of the ionosphere is affected by its electron content and the magnetic field of the Earth, so the carrier phase of the GPS L1 and L2 signals is advanced and the modulated code delayed. Due to system design the polarisation is unaffected. Most of the effect is removed by expanding the refractive index as a series and eliminating the first term with a linear combination of the two signals. However, the higher order terms remain. Furthermore, transiting gradients in refractive index at a non-perpendicular angle causes signal bending. In addition to the initial geometric bending term, another term allows for the difference that the curvature makes in electron content along each signal. Varying approximations have been made for practical implementation, mainly to avoid the need for a vertical profile of electron density. The magnetic field may be modelled as a tilted co-centric dipole, or using more realistic models such as the International Geomagnetic Reference Field. The largest effect is from the second term in the expansion of the refractive index. Up to several cm on L2, it particularly affects z-translation, and satellite orbits and clocks in a global network of GPS stations. The third term is at the level of the errors in modelling the second order term, while the bending terms appear to be absorbed by tropospheric parameters. Modelling improvements are possible, and three frequency transmissions will allow new possibilities.


Higher-order effects Ionosphere GPS Refractive index Signal bending 


  1. Anderson D, Fuller-Rowell T (1999) The ionosphere, space environment topics (SE-14) [Online]. Available at: Accessed 10 Jan 2010
  2. Appleton EV (1932) Wireless studies of the ionosphere. Proc Wirel Sect Inst Electr Eng 7(21):257–265Google Scholar
  3. Balanis CA (2005) Antenna theory—analysis and design, 3rd edn [Online]. Available at: Accessed 7 Sept 2009
  4. Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18:280–289Google Scholar
  5. Bilitza D, Reinisch BW (2008) International Reference Ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609CrossRefGoogle Scholar
  6. Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, Okal E (2009) GPS for real-time earthquake source determination and tsunami warning systems. J Geod 83(3–4):335–343CrossRefGoogle Scholar
  7. Born M, Wolf E (1999) Principles of optics—electromagnetic theory of propagation interference and diffraction of light. Cambridge University Press, CambridgeGoogle Scholar
  8. Bouin MN, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180(1):193–209CrossRefGoogle Scholar
  9. Brunini C, Azpilicueta F (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785CrossRefGoogle Scholar
  10. Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscr Geod 16:205–214Google Scholar
  11. Budden KG (1985) The propagation of radiowaves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Burrell A, Bonito N, Carrano C (2009) Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS Sol 13(2):83–95CrossRefGoogle Scholar
  13. Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46:RG1003. doi:10.1029/2006RG000212 CrossRefGoogle Scholar
  14. Calais E, Mattioli G, DeMets C, Nocquet JM, Stein S, Newman A, Rydelek P (2005) Seismology: tectonic strain in plate interiors? Nature 438(7070):E9–E10CrossRefGoogle Scholar
  15. Cander LR (2008) Ionospheric research and space weather services. J Atmos Sol Terr Phys 70(15):1870–1878CrossRefGoogle Scholar
  16. Ciraolo L, Spalla P (1997) Comparison of ionospheric total electron content from the Navy Navigation Satellite System and the GPS. Radio Sci 32(7):1071–1080CrossRefGoogle Scholar
  17. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  18. CODE (2007) Global ionospheric maps from the centre for orbit determination in Europe. Accessed 10 Feb 2010
  19. Coïsson P, Radicella SM, Ciraolo L, Leitinger R, Nava B (2008) Global validation of IRI TEC for high and medium solar activity conditions. Adv Space Res 42(4):770–775CrossRefGoogle Scholar
  20. Datta-Barua S, Walter T, Blanch J, Enge P (2006) Bounding higher order ionosphere errors for the dual frequency GPS User. In: ION GNSS 19th international technical meeting of the satellite division. Fort Worth, TX, 26–29 Sept 2006Google Scholar
  21. Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionosphere errors for the dual-frequency GPS user. Radio Sci 43:RS5010. doi:10.1029/2007RS003772 CrossRefGoogle Scholar
  22. Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, LondonGoogle Scholar
  23. Doherty P, Coster AJ, Murtagh W (2004) Space weather effects of October–November 2003. GPS Sol 8(4):267–271CrossRefGoogle Scholar
  24. Feltens J (2003) The activities of the Ionosphere Working Group of the International GPS Service (IGS). GPS Sol 7(1):41–46Google Scholar
  25. Fleury R, Clemente M, Carvalho F, Lassudrie-Duchesne P (2009) Modelling of ionospheric high-order errors for new generation GNSS. Ann Telecomm 64(9):615–623CrossRefGoogle Scholar
  26. Fowler CMR (1990) The solid Earth. Cambridge University Press, CambridgeGoogle Scholar
  27. Fritsche M, Dietrich R, Knofel C, Rϋlke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32:L23311. doi:10.1029/2005GL02434223 CrossRefGoogle Scholar
  28. Gherm VE, Novitsky R, Zernov N, Strangeways HJ, Ioannides RT (2006) On the limiting accuracy of range measurements for the three-frequency mode of operation of a satellite navigation system. In: 2nd Workshop on radio systems and ionospheric effects, COST action 296 mitigation of ionospheric effects on radio systems (MIERIS), Rennes, 3–7 Oct 2006Google Scholar
  29. Groves PD, Harding SJ (2003) Ionosphere propagation error correction for Galileo. J Navig 56:45–50CrossRefGoogle Scholar
  30. Gu M, Brunner FK (1990) Theory of the two frequency dispersive range correction. Manuscr Geod 15:357–361Google Scholar
  31. Gulyaeva TL (2009) Linkage of the ionospheric peak electron density and height deduced from the topside sounding data. Adv Space Res 43(11):1794–1799CrossRefGoogle Scholar
  32. Hartmann GK, Leitinger R (1984) Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bull Geod 58:109–136CrossRefGoogle Scholar
  33. Hartree DR (1931) The propagation of electromagnetic waves in a refracting medium in a magnetic field. Proc Camb Phil Soc 27:143–162. doi:10.1017/S0305004100009440 CrossRefGoogle Scholar
  34. Hawarey M, Hobinger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32:L11304. doi:10.1029/2005GL022729 CrossRefGoogle Scholar
  35. Hecht E (1998) Optics. Addison Wesley Longman, New YorkGoogle Scholar
  36. Hernández-Pajares M (2004) IGS Ionosphere WG status report: performance of IGS Ionosphere, TEC Maps. IGS Technical Meeting, BernGoogle Scholar
  37. Hernández-Pajares M, Juan JM, Sanz J (2005) Towards a more realistic mapping function. URSI GA, New DelhiGoogle Scholar
  38. Hernández-Pajares M, Juan JM, Sanz J, Ors R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112:B08417. doi:10.1029/2006JB004707 CrossRefGoogle Scholar
  39. Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2008) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275CrossRefGoogle Scholar
  40. Herring T (1983) The precision and accuracy of intercontinental distance determinations using radio interferometry. PhD thesis, Massachusetts Institute of TechnologyGoogle Scholar
  41. Herring TA (1999) Geodetic applications of GPS. Proc IEEE 87(1):92–110CrossRefGoogle Scholar
  42. Hocke K (2008) Oscillations of global mean TEC. J Geophys Res 113:A04302. doi:10.1029/2007JA012798 CrossRefGoogle Scholar
  43. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer, WienGoogle Scholar
  44. Hoque M, Jakowski N (2007) Higher order ionospheric effects in precise GNSS positioning. J Geod 81(4):259–268CrossRefGoogle Scholar
  45. Hoque M, Jakowski N (2008a) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Sol 12(2):87–97CrossRefGoogle Scholar
  46. Hoque MM, Jakowski N (2008b) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43:RS5008. doi:10.1029/2007RS003817 CrossRefGoogle Scholar
  47. Hoque MM, Jakowski N (2010) Higher order ionospheric propagation effects on GPS radio occultation signals. Adv Space Res 46(2):162–173. doi:10.1016/j.asr.2010.02.013 CrossRefGoogle Scholar
  48. Horvath I, Crozier S (2007) Software developed for obtaining GPS-derived total electron content values. Radio Sci 42:RS2002. doi:10.1029/2006RS003452 CrossRefGoogle Scholar
  49. ICD-GPS-200 (2000) Interface control document ICD-GPS-200 Navstar GPS Space Segment/Navigation User InterfacesGoogle Scholar
  50. IERS (2009) IERS conventions update: chapter 9. Working version updated 16 July 2009. International Earth Rotation ServiceGoogle Scholar
  51. Imel DA (1994) Evaluation of the TOPEX/POSIEDON dual frequency ionosphere correction. J Geophys Res 99(C12):24895–24906CrossRefGoogle Scholar
  52. Jakowski N, Putz E, Spalla P (1990) Ionospheric storm characteristics deduced from satellite radio beacon observations at 3 European stations. Ann Geophys 8(5):343–351Google Scholar
  53. Jakowski N, Jungstand A, Lois L, Lazo B (1991) Night-time enhancements of the F2-layer ionization over Havana, Cuba. J Atmos Terr Phys 53(11–12):1131–1138CrossRefGoogle Scholar
  54. Jakowski N, Porsch F, Mayer G (1994) Ionosphere—induced ray-path bending effects in precision satellite positioning systems. Z Satell Position Navig Kommun SPN1/94:6–13Google Scholar
  55. Kamide Y, Chian AC-L (eds) (2007) Handbook of the solar-terrestrial environment. Springer, BerlinGoogle Scholar
  56. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi:10.1029/2003GL017639 CrossRefGoogle Scholar
  57. Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. International geophysics series, vol 96, 2nd edn. Academic Press, San DiegoGoogle Scholar
  58. Kim BC, Tinin MV (2009) The association of the residual error of dual-frequency Global Navigation Satellite Systems with ionospheric turbulence parameters. J Atmos Sol Terr Phys 71(17–18):1967–1973CrossRefGoogle Scholar
  59. Kintner PM, Ledvina BM (2005) The ionosphere, radio navigation, and global navigation satellite systems. Adv Space Res 35(5):788–811CrossRefGoogle Scholar
  60. Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, New YorkGoogle Scholar
  61. Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol 1. American Institute of Aeronautics and Astronautics Inc., Washington, pp 485–515Google Scholar
  62. Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system. University of New Brunswick Technical Report No. 188. PhD thesis, University of New BrunswickGoogle Scholar
  63. Komjathy A, Langley RB (1996) The effect of shell height on high precision ionospheric modelling using GPS. In: Proceedings of the 1996 IGS workshop international GPS service for geodynamics, Silver Springs, MD, 19–21 Mar 1996Google Scholar
  64. Langel RA (1987) The main field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic Press, London, pp 249–267Google Scholar
  65. Langley RB (1998) Propagation of the GPS signals. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 115–149Google Scholar
  66. Larson KM, Bilich A, Axelrad P (2007) Improving the precision of high-rate GPS. J Geophys Res 112:B05422. doi:10.1029/2006JB004367 CrossRefGoogle Scholar
  67. Lassen H (1927) Über den einfluss des erdmagnetfeldes auf die fortpflanzung der elektrischen wellen der drahtlosen telegraphie in der atmosphare. Elektrische Nachrichten-Technik 4:324–334Google Scholar
  68. Leick A (2004) GPS satellite surveying. Wiley, New JerseyGoogle Scholar
  69. Leitinger R, Putz E (1988) Ionospheric refraction errors and observables. In: Brunner FK (ed) Atmospheric effects on geodetic space measurements. Monograph 12. School of Surveying, University of New South Wales, Kensington, NSW, pp 81–102Google Scholar
  70. Leitinger R, Jakowski N, Davies K, Hartmann GK, Feichter E (2000) Ionospheric electron content and space weather: some examples. Phys Chem Earth (A) 25(8):629–634CrossRefGoogle Scholar
  71. Liang M-C, Li K-F, Shia R-L, Yung YL (2008) Short-period solar cycle signals in the ionosphere observed by FORMOSAT-3/COSMIC. Geophys Res Lett 35:L15818. doi:10.1029/2008GL034433 CrossRefGoogle Scholar
  72. Liu H, Stolle C, Watanabe S, Abe T, Rother M, Cooke DL (2007) Evaluation of the IRI model using CHAMP observations in polar and equatorial regions. Adv Space Res 39:904–909CrossRefGoogle Scholar
  73. Liu L, Zhao B, Wan W, Ning B, Zhang M-L, He M (2009) Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res 114:A02302. doi:10.1029/2008JA013819 CrossRefGoogle Scholar
  74. Maus S, Macmillan S (2005) 10th Generation international reference field. EOS Trans 86(16):159Google Scholar
  75. Maus S, Macmillan S, Chernova T, Choi S, Dater D, Golovkov V, Lesur V, Lowes F, Lühr H, Mai W, McLean S, Olsen N, Rother M, Sabaka T, Thomson A, Zvereva T (2005) The 10th-generation international geomagnetic reference field. Geophys J Int 161(3):561–565CrossRefGoogle Scholar
  76. Mazzella AJ Jr (2009) Plasmasphere effects for GPS TEC measurements in North America. Radio Sci 44:RS5014. doi:10.1029/2009RS004186 CrossRefGoogle Scholar
  77. Min K, Park J, Kim H, Kim V, Kil H, Lee J, Rentz S, Luhr H, Paxton L (2009) The 27-day modulation of the low-latitude ionosphere during a solar maximum. J Geophys Res 114:A04317. doi:10.1029/2008JA013881 CrossRefGoogle Scholar
  78. Morton YT, van Graas F, Zhou Q, Herdtner J (2009a) Assessment of the higher order ionosphere error on position solutions. Navigation 56(3):185–193Google Scholar
  79. Morton, YT, Zhou, Q, van Graas, F (2009b) Assessment of second-order ionosphere error in GPS range observables using Arecibo incoherent scatter radar measurements. Radio Sci 44: RS1002, doi:10.1029/2008RS003888
  80. Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163(1):10–17CrossRefGoogle Scholar
  81. Mushini SC, Jayachandran PT, Langley RB, MacDougall JW (2009) Use of varying shell heights derived from ionosonde data in calculating vertical total electron content (TEC) using GPS—new method. Adv Space Res 44(11):1309–1313CrossRefGoogle Scholar
  82. Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. PhD thesis, Technische Universiteit, DelftGoogle Scholar
  83. Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129(4):165–173CrossRefGoogle Scholar
  84. Palamartchouk K (2010) Apparent geocenter oscillations in global navigation satellite systems solutions caused by the ionospheric effect of second order. J Geophys Res 115(B3):B03415. doi:10.1029/2008jb006099 CrossRefGoogle Scholar
  85. Papas CH (1965) Theory of electromagnetic wave propagation. McGraw-Hill, New YorkGoogle Scholar
  86. Parkinson WD (1983) Introduction to geomagnetism. Scottish Academic Press, EdinburghGoogle Scholar
  87. Petrie EJ, King MA, Moore P, Lavallée DA (2010a) A first look at the effects of ionospheric signal bending on a globally processed GPS network. J Geod 84(8):491–499CrossRefGoogle Scholar
  88. Petrie EJ, King MA, Moore P, Lavallée DA (2010b) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115(B3):B03417. doi:10.1029/2009jb006677 CrossRefGoogle Scholar
  89. Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2010) Higher-order ionospheric effects in GPS time and frequency transfer. GPS Sol 14(3):267–277. doi:10.1007/s10291-009-0152-1 CrossRefGoogle Scholar
  90. Plag HP (2005) The GGOS as the backbone for global observing and local monitoring: a user driven perspective. J Geodyn 40(4–5):479–486Google Scholar
  91. Ratcliffe JA (1959) The magneto-ionic theory and its applications to the ionosphere—a monograph. Cambridge University Press, CambridgeGoogle Scholar
  92. Rawer K, Suchy K (1967) Radio-observations of the ionosphere. In: Flugge S (ed) Handbuch der physik, vol 49/2. Springer, Berlin, pp 1–537Google Scholar
  93. Rishbeth H (2003) Basic physics of the ionosphere. In: Barclay L (ed) Propagation of radiowaves. The Institution of Electrical Engineers, London, p 460Google Scholar
  94. Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159(2):521–547CrossRefGoogle Scholar
  95. Schaer S (1997) How to use CODE’s global ionosphere maps. Astronomical Institute, University of BerneGoogle Scholar
  96. Schaer S, Gurtner W, Feltens J (1998) IONEX: The IONosphere map EXchange format version 1. IGS AC workshop, Darmstadt, 9–11 FebruaryGoogle Scholar
  97. Schunk RW, Nagy AF (2009) Ionospheres: physics, plasma physics, and chemistry. Cambridge atmospheric and space science series, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  98. Smith DA, Araujo-Pradere EA, Minter C, Fuller-Rowell T (2008) A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci 43:RS6008. doi:10.1029/2007RS003769 CrossRefGoogle Scholar
  99. Stankov SM, Warnant R, Stegen K (2009) Trans-ionospheric GPS signal delay gradients observed over mid-latitude Europe during the geomagnetic storms of October–November 2003. Adv Space Res 43(9):1314–1324CrossRefGoogle Scholar
  100. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rϋlke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. doi:10.1029/2005JB003747 CrossRefGoogle Scholar
  101. Strangeways HJ, Ioannides RT (2002) Rigorous calculation of ionospheric effects on GPS Earth-satellite paths using a precise path determination method. Acta Geod Geophys 37(2–3):281–292CrossRefGoogle Scholar
  102. Todorova S, Hobiger T, Schuh H (2008) Using the Global Navigation Satellite System and satellite altimetry for combined Global Ionosphere Maps. Adv Space Res 42(4):727–736CrossRefGoogle Scholar
  103. Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39:RS1S06. doi:10.1029/2002RS002854 CrossRefGoogle Scholar
  104. Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modelling in gps modernization. J Glob Position Syst 4(1–2):291–295CrossRefGoogle Scholar
  105. Yeh KC, Liu CH (1972) Theory of ionospheric waves. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elizabeth J. Petrie
    • 1
  • Manuel Hernández-Pajares
    • 2
  • Paolo Spalla
    • 3
  • Philip Moore
    • 1
  • Matt A. King
    • 1
  1. 1.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Research Group of Astronomy and GeomaticsTechnical University of Catalonia (gAGE/UPC)BarcelonaSpain
  3. 3.IFAC-CNRSesto FiorentinoItaly

Personalised recommendations