Surveys in Geophysics

, Volume 30, Issue 4–5, pp 301–326 | Cite as

Global Observations of Mantle Discontinuities Using SS and PP Precursors

Article

Abstract

SS and PP precursors are currently the only body wave data types that have significant coverage in both oceanic and continental regions to study the existence and characteristics of mantle discontinuities on a global scale. Here, the techniques used by global seismologists to observe SS and PP precursors are reviewed. Seismograms, aligned on SS or PP, are stacked using normal move out (NMO) techniques to obtain common depth point gathers. Bootstrap methods are employed to determine 95% confidence levels of the stacks and robustness of the observations. With these relatively simple techniques, a range of discontinuities has been found in the mantle up to 1,200 km depth. The stacks are dominated by the transition zone discontinuities at 410, 520 and 660 km depth, but additional discontinuities at 220, 300–350, 800–900 and 1,100–1,200 km depth are also seen in certain regions. An overview is given of the most recent observational results with a discussion of their mineral physical interpretation and geodynamical significance. Both seismology and mineral physics agree on the level of complexity at the transition discontinuities: a simple 410, a more complicated 520 and a highly complicated 660-km discontinuity are consistently found in both disciplines.

Keywords

Seismology Mantle discontinuities Transition zone Precursors Stacking 

References

  1. Akaogi M, Yusa H, Shiraishi K, Suzuki T (1995) Thermodynamic properties of α-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and temperatures. J Geophys Res 100:22337–22347CrossRefGoogle Scholar
  2. Aki K, Richards P (2002) Quantitative seismology, 2nd edn. University Science Books, SausalitoGoogle Scholar
  3. Anderson DL (1989) Theory of the Earth. Blackwell Scientific, BostonGoogle Scholar
  4. Andrews J, Deuss A (2008) Detailed nature of the 660 km region of the mantle from global receiver function data. J Geophys Res 113. doi:10.1029/2007JB005,111
  5. Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324CrossRefGoogle Scholar
  6. Benz HM, Vidale JE (1993) Sharpness of upper-mantle discontinuities determined from high-frequence reflections. Nature 365:147–150CrossRefGoogle Scholar
  7. Bercovici D, Karato S (2003) Whole-mantle convection and the transition-zone water filter. Nature 438:39–44CrossRefGoogle Scholar
  8. Bock G (1994) Synthetic seismogram images of upper mantle structure: no evidence for a 520-km discontinuity. J Geophys Res 99(B8):15843–15851CrossRefGoogle Scholar
  9. Chaljub E, Tarantola A (1997) Sensitivity of SS precursors to topography on the upper-mantle 660-km discontinuity. Geophys Res Lett 24(21):2613–2616CrossRefGoogle Scholar
  10. Chambers K, Deuss A, Woodhouse JH (2005a) Reflectivity of the 410-km discontinuity from PP and SS precursors. J Geophys Res 110(B2):B02,301. doi:org/10/1029/2004JB003,345 CrossRefGoogle Scholar
  11. Chambers K, Woodhouse JH, Deuss A (2005b) Topography of the 410-km discontinuity from PP and SS precursors. Earth Planet Sci Lett 235(3–4):610–622CrossRefGoogle Scholar
  12. Chapman CH (1976) A first motion alternative to geometrical ray theory. Geophys Res Lett 3:153–156CrossRefGoogle Scholar
  13. Chevrot S, Vinnik L, Montagner JP (1999) Global-scale analysis of the mantle Pds phases. J Geophys Res 104(B9):20203–20219CrossRefGoogle Scholar
  14. Dahlen FA (2005) Finite-frequency sensitivity kernels for boundary topography perturbations. Geophys J Int 162:525–540CrossRefGoogle Scholar
  15. Deuss A (2007) Seismic observations of transition-zone discontinuities beneath hotspot location. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes: special paper, vol 430. Geological Society of America, Boulder, pp 121–136CrossRefGoogle Scholar
  16. Deuss A, Woodhouse JH (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294:354–357CrossRefGoogle Scholar
  17. Deuss A, Woodhouse JH (2002) A systematic search for upper mantle discontinuities using SS-precursors. Geophys Res Lett 29:901–904CrossRefGoogle Scholar
  18. Deuss A, Woodhouse JH (2004) The nature of the Lehmann discontinuity from its seismological Clapeyron slopes. Earth Planet Sci Lett 232:295–304CrossRefGoogle Scholar
  19. Deuss A, Redfern SAT, Chambers K, Woodhouse JH (2006) The nature of the 660-km discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science 311:198–201CrossRefGoogle Scholar
  20. Dziewonski A, Anderson D (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  21. Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253:390–395CrossRefGoogle Scholar
  22. Estabrook CH, Kind R (1996) The nature of the 660-kilometer upper-mantle seismic discontinuity from precursors to the PP phase. Science 274:1179–1182CrossRefGoogle Scholar
  23. Flanagan MP, Shearer PM (1998) Global mapping of topography on transition zone velocity discontinuities by stacking of SS precursors. J Geophys Res 103(B2):2673–2692CrossRefGoogle Scholar
  24. Flanagan MP, Shearer PM (1999) A map of topography on the 410-km discontinuity from pp precursors. Geophys Res Lett 26(5):549–552CrossRefGoogle Scholar
  25. Frost DJ, Dolejs D (2007) Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet Sci Lett 256:182–195CrossRefGoogle Scholar
  26. Gossler J, Kind R (1996) Seismic evidence for very deep roots of continents. Earth Planet Sci Lett 138:1–13CrossRefGoogle Scholar
  27. Gu Y, Dziewonski AM (2002) Global variability of transition zone thickness. J Geophys Res 107. doi:10.1029/2001JB000,489
  28. Gu Y, Dziewonski AM, Agee CB (1998) Global de-correlation of the topography of transition zone discontinuities. Earth Planet Sci Lett 157:57–67CrossRefGoogle Scholar
  29. Gu Y, Dziewonski AM, Ekström G (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys Res Lett 28(24):4655–4558CrossRefGoogle Scholar
  30. Gu Y, Dziewonski AM, Ekström G (2003) Simultaneous inversion for mantle shear wave velocity and topography of transition zone discontinuities. Geophys J Int 154:559–583CrossRefGoogle Scholar
  31. Gu YJ, Sacchi M (2009) Radon transform methods and their applications in mapping mantle reflectivity structure. Surv Geophys (this issue). doi:10.1007/s10712-009-9076-0
  32. Helffrich G (2000) Topography of the transition zone seismic discontinuities. Rev Geophys 38:141–158CrossRefGoogle Scholar
  33. Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107(B4). doi:10.1029/2001JB000587
  34. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  35. Houser C, Masters G, Flanagan M, Shearer P (2008) Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys J Int 174:178–194CrossRefGoogle Scholar
  36. Ita J, Stixrude L (1992) Petrology, elasticity and composition of the mantle transition zone. J Geophys Res 97:6849–6866CrossRefGoogle Scholar
  37. Johnson LR (1967) Array measurements of P velocities in the upper mantle. J Geophys Res 72:6309–6325CrossRefGoogle Scholar
  38. Karato S (1992) On the Lehmann discontinuity. Geophys Res Lett 19(22):2255–2258CrossRefGoogle Scholar
  39. Kingma KJ, Cohen RE, Hemley RJ, Mao HK (1995) Transformation of stishovite to a denser phase at lower mamntle pressures. Nature 374:243–245CrossRefGoogle Scholar
  40. Lawrence J, Shearer P (2006a) Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms. G3 7. doi:10.1029/2006GC001,339
  41. Lawrence J, Shearer P (2006b) A global study of transition zone thickness using receiver functions. J Geophys Res 111. doi10.1029/2005JB003,973
  42. Lawrence J, Shearer P (2008) Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophys J Int 174:143–158CrossRefGoogle Scholar
  43. Lee DK, Grand SP (1996) Depth of the upper mantle discontinuities beneath the east pacific rise. Geophys Res Lett 23(23):3369–3372CrossRefGoogle Scholar
  44. Lehmann I (1961) S and the structure of the upper mantle. Geophys J R Astron Soc 4:124–138Google Scholar
  45. Muirhead K (1968) Eliminating false alarms when detecting seismic events automatically. Nature 217:533–534CrossRefGoogle Scholar
  46. Müller G (1985) The reflectivity method: a tutorial. J Geophys 58:153–174Google Scholar
  47. Neele F, de Regt H, VanDecar J (1997) Gross errors in upper-mantle discontinuity topography from underside reflection data. Geophys J Int 129:194–204CrossRefGoogle Scholar
  48. Niazi M, Anderson DL (1965) Upper mantle structure of western North America from apparent velocities of P waves. J Geophys Res 70:4633–4640CrossRefGoogle Scholar
  49. Revenaugh J, Jordan TH (1991a) Mantle layering from ScS reverberations 2. The transition zone. J Geophys Res 96(B12):19736–19780Google Scholar
  50. Revenaugh J, Jordan TH (1991b) Mantle layering from ScS reverberations 3. The upper mantle. J Geophys Res 96(B12):19781–19810Google Scholar
  51. Revenaugh J, Williams Q (2000) The seismic X discontinuity: observation and modeling. Eos Trans AGU 81:F922Google Scholar
  52. Richards P (1972) Seismic waves reflected from velocity gradient anomalies within the Earth’s upper mantle. Zeitschrift für Geophysik 38:517–527Google Scholar
  53. Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New YorkGoogle Scholar
  54. Rondenay S (2009) Upper mantle imaging with array recordings of converted and scattered teleseismic waves. Surv Geophys (this issue). doi:10.1007/s10712-009-9071-5
  55. Rost S, Thomas C (2009) Improving seismic resolution through array processing techniques. Surv Geophys (this issue). doi:10.1007/s10712-009-9070-6
  56. Rost S, Weber M (2001) A reflector at 200 km depth beneath the northwest pacific. Geophys J Int 147:12–28CrossRefGoogle Scholar
  57. Rost S, Weber M (2002) The upper mantle transition zone discontinuities in the pacific as determined by short-period array data. Earth Planet Sci Lett 204:347–361CrossRefGoogle Scholar
  58. Saikia A, Frost D, Rubie D (2008) Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science 319:1515–1518Google Scholar
  59. Schimmel M, Paulssen H (1997) Noise reduction and the detection of weak, coherent signals through phase-weighted stacks. Geophys J Int 130:497–505CrossRefGoogle Scholar
  60. Schmerr N, Garnero E (2006) Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors. J Geophys Res 111. doi:10.1029/2005JB004,197
  61. Schmerr N, Garnero E (2007) Upper mantle discontinuity topography from thermal and chemical heterogeneity. Science 318:623–626CrossRefGoogle Scholar
  62. Schubert G, Turcotte DL, Olsen P (2001) Mantle convection in the Earth and Planets. Cambridge University Press, CambridgeGoogle Scholar
  63. Shearer PM (1990) Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature 344:121–126CrossRefGoogle Scholar
  64. Shearer PM (1991) Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases. J Geophys Res 96:18147–18182Google Scholar
  65. Shearer PM (1996) Transition zone velocity gradients and the 520-km discontinuity. J Geophys Res 101(B2):3053–3066CrossRefGoogle Scholar
  66. Shearer PM (2000) Upper mantle seismic discontinuities. Geophys Monogr 117:115–131Google Scholar
  67. Shearer PM, Flanagan MP (1999) Seismic velocity and density jumps across the 410- and 660-kilometer discontinuities. Science 285:1545–1548CrossRefGoogle Scholar
  68. Shearer PM, Flanagan MP, Hedlin AH (1999) Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure. J Geophys Res 104:7229–7242CrossRefGoogle Scholar
  69. Simmons NA, Gurrola H (2000) Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature 405:559–562CrossRefGoogle Scholar
  70. Song TRA, Helmberger DV, Grand SP (2004) Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427:530–533CrossRefGoogle Scholar
  71. Thomas C, Billen MI (2009) Mantle transition zone structure along a profile in the SW Pacific: thermal and compositional variations. Geophys J Int 176:113–125CrossRefGoogle Scholar
  72. Vacher P, Mocquet A, Sotin C (1998) Computations of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys Earth Planet Inter 106:275–298CrossRefGoogle Scholar
  73. Vinnik L, Niu F, Kawakatsu H (1998) Broadband converted phaes from midmantle discontinuities. Earth Planets Space 50:987–997Google Scholar
  74. Vinnik L, Kato M, Kawakatsu H (2001) Search for seismic discontinuities in the lower mantle. Geophys J Int 147:41–56CrossRefGoogle Scholar
  75. Weidner DJ, Wang Y (1998) Chemical- and Clapeyron-induced bouyancy at the 660 km discontinuity. J Geophys Res 103(B4):7431–7441CrossRefGoogle Scholar
  76. Weidner DJ, Wang Y (2000) Phase transformations: implications for mantle structure. In: Karato S, Forte A, Liebermann R, Masters G, Stixrude L (eds) Earth’s deep interior: mineral physics and tomography from the atomic to the global scale, vol 117, AGU geophysical monograph. American Geophysical Union, Washington, DC, pp 215–235Google Scholar
  77. Wood BJ (1995) The effect of H2O on the 40-kilometer seismic discontinuity. Science 268:74–76CrossRefGoogle Scholar
  78. Woodhouse JH (1988) The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun. In: Doornbos DJ (ed) Seismological algorithms. Academic Press, San Diego, pp 321–370Google Scholar
  79. Xu F, Vidale JE, Earle PS (2003) Survey of precursors to P′P′: fine structure of mantle discontinuities. J Geophys Res 108. doi:10.1029/2001JB000,817
  80. Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Bullard LabsUniversity of CambridgeCambridgeUK

Personalised recommendations