Surveys in Geophysics

, Volume 30, Issue 4–5, pp 377–405 | Cite as

Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves

Article

Abstract

This paper provides a review of array-based imaging techniques that use converted and scattered teleseismic waves. It addresses various aspects of the imaging process, from the preprocessing of the data to the application of the imaging algorithms. The reviewed techniques form a continuum with respect to the level of complexity adopted in the treatment of the scattering problem. On one end of the spectrum, images may be produced by simple stacking of normalized P-to-S conversion records (i.e., receiver functions), which are binned according to station or common conversion points (CCP) and mapped to depth. Finer resolution can be achieved through the stacking of singly scattered wavefields along diffraction hyperbolae to recover relative scattering intensity/potential at individual points through a 2-D or 3-D model space. Moving to higher levels of complexity, we find methods that involve inversion/backprojection of scattered teleseismic wavefield to recover estimates of localized material property perturbations with respect to an a priori background model.

Keywords

Receiver functions Teleseismic Migration Imaging lithosphere Upper mantle 

References

  1. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito, CAGoogle Scholar
  2. Båth M, Stefánsson R (1966) SP conversions at the base of the crust. Ann Geofis 19:119–130Google Scholar
  3. Berkhout AJ (1977) Least-squares inverse filtering and wavelet deconvolution. Geophysics 42(7):1369–1383CrossRefGoogle Scholar
  4. Bostock M (1999) Seismic imaging of lithospheric discontinuities and continental evolution. Lithos 48(1–4):1–16CrossRefGoogle Scholar
  5. Bostock MG (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res 103(B9):21183–21200CrossRefGoogle Scholar
  6. Bostock MG (2004) Green’s functions, source signatures, and the normalization of teleseismic wave fields. J Geophys Res 109:B03303. doi:10.1029/2003JB002783 CrossRefGoogle Scholar
  7. Bostock MG, Rondenay S (1999) Migration of scattered teleseismic body waves. Geophys J Int 137:732–746CrossRefGoogle Scholar
  8. Bostock MG, Rondenay S, Shragge J (2001) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 1, Theory for oblique incidence. J Geophys Res 106:30771–30782CrossRefGoogle Scholar
  9. Burdick LJ, Langston CA (1977) Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bull Seismol Soc Am 67(3):677–691Google Scholar
  10. Crotwell HP, Owens TJ, Ritsema J (1999) The TauP Toolkit: flexible seismic travel-time and ray-path utilities. Seismol Res Lett 70:154–160Google Scholar
  11. Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted p to s waves across the Yellowstone hotspot track. J Geophys Res 102:8313–8327CrossRefGoogle Scholar
  12. Dziewonski AM, Anderson DL (1981) Preliminary Reference Earth Model. Phys Earth Planet Int 25:297–356CrossRefGoogle Scholar
  13. Frederiksen AW, Bostock MG (2000) Modelling teleseismic waves in dipping anisotropic structures. Geophys J Int 141:401–412CrossRefGoogle Scholar
  14. Frederiksen AW, Revenaugh J (2004) Lithospheric imaging via teleseismic scattering tomography. Geophys J Int 159:978–990CrossRefGoogle Scholar
  15. Gurrola H, Baker GE, Minster JB (1995) Simultaneous time-domain deconvolution with application to the computation of receiver functions. Geophys J Int 120:537–543CrossRefGoogle Scholar
  16. Kennett BLN (1991) The removal of free surface interactions from three-component seismograms. Geophys J Int 104:153–163CrossRefGoogle Scholar
  17. Kikuchi M, Kanamori H (1982) Inversion of complex body waves. Bull Seismol Soc Am 72(2):491–506Google Scholar
  18. Kind R, Kosarev GL, Petersen NV (1995) Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys J Int 121:191–202CrossRefGoogle Scholar
  19. Kosarev G, Kind R, Sobolev SV, Yuan X, Hanka W, Oreshin S (1999) Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283:1306–1309CrossRefGoogle Scholar
  20. Langston CA (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762CrossRefGoogle Scholar
  21. Levander A, Niu F, Symes WW (2005) Imaging teleseismic P and S scattered waves using the Kirchhoff integral. In: Levander A, Nolet G (eds) Seismic Earth: array analysis of broadband seismograms, No. 157 in AGU Geophysical Monograph. AGU, Washington, DC, pp 149–169Google Scholar
  22. Li X, Yuan X, Kind R (2007) The lithosphere-asthenosphere boundary beneath the western United States. Geophys J Int 170:700–710CrossRefGoogle Scholar
  23. Ligorría JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 89(5):1395–1400Google Scholar
  24. Miller D, Oristaglio M, Beylkin G (1987) A new slant on seismic imaging: migration and integral geometry. Geophysics 52:943–964CrossRefGoogle Scholar
  25. Park J, Levin V (2000) Receiver functions from multiple-taper spectral correlation estimates. Bull Seismol Soc Am 90(6):1507–1520CrossRefGoogle Scholar
  26. Poppeliers C, Pavlis GL (2003a) Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory. J Geophys Res 108:2112. doi:10.1029/2001JB000216 CrossRefGoogle Scholar
  27. Poppeliers C, Pavlis GL (2003b) Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 2. Stacking multiple events. J Geophys Res 108:2267. doi:10.1029/2001JB001583 CrossRefGoogle Scholar
  28. Pratt RG (1999) Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64(3):888–901CrossRefGoogle Scholar
  29. Reading A, Kennett BLN, Sambridge M (2003) Improved inversion for seismic structure using transformed, S-wavevector receiver functions: removing the effect of the free surface. Geophys Res Lett 30(19):1981. doi:10.1029/2003GL018090 CrossRefGoogle Scholar
  30. Revenaugh J (1995) A scattered-wave image of subduction beneath the transverse ranges. Science 268:1888–1892CrossRefGoogle Scholar
  31. Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis RM (2000) Lithospheric assembly and modification of the SE Canadian Shield: Abitibi–Grenville teleseismic experiment. J Geophys Res 105(B6):13735–13754CrossRefGoogle Scholar
  32. Rondenay S, Bostock MG, Shragge J (2001) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3, Application to the Cascadia 1993 data set. J Geophys Res 106:30795–30808CrossRefGoogle Scholar
  33. Rondenay S, Bostock M, Fischer K (2005) Multichannel inversion of scattered teleseismic body waves: Practical considerations and applicability. In: Levander A, Nolet G (eds) Seismic Earth: array analysis of broadband seismograms, No. 157 in AGU Geophysical Monograph. AGU, Washington, DC, pp 187–204Google Scholar
  34. Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone metamorphism. Geology 36:275–278CrossRefGoogle Scholar
  35. Ryberg T, Weber M (2000) Receiver function arrays: a reflection seismic approach. Geophys J Int 141:1–11CrossRefGoogle Scholar
  36. Rychert CA, Fischer KM, Rondenay S (2005) A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 436:542–545CrossRefGoogle Scholar
  37. Rychert CA, Rondenay S, Fischer KM (2007) P-to-S and S-to-P imaging of a sharp lithosphere–asthenosphere boundary beneath eastern North America. J Geophys Res 112(B8):B08314. doi:10.1029/2007GL029535 CrossRefGoogle Scholar
  38. Sheehan AF, Shearer PM, Gilbert HJ, Dueker KG (2000) Seismic migration processing of PSV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. J Geophys Res 105:19055–19065CrossRefGoogle Scholar
  39. Sipkin SA, Lerner-Lam AL (1992) Pulse-shape distortion introduced by broadband deconvolution. Bull Seismol Soc Am 82(1):238–258Google Scholar
  40. Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden L (2007) Imaging the southern hellenic subduction zone through migration of scattered teleseismic body waves. Eos Trans AGU 88(52):Fall Meet. Suppl., Abstract T51B-0558Google Scholar
  41. Svenningsen L, Jacobsen BH (2004) Comment on Improved inversion for seismic structure using transformed, S-wavevector receiver functions: removing the effect of the free surface by Anya Reading, Brian Kennett, and Malcolm Sambridge. Geophys Res Lett 31:L24609. doi:10.1029/2004GL021413 CrossRefGoogle Scholar
  42. Svenningsen L, Jacobsen BH (2007) Absolute S-velocity estimation from receiver functions. Geophys J Int 170:1089–1094CrossRefGoogle Scholar
  43. Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phys 3:1–32Google Scholar
  44. Vinnik L (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Int 15:39–45CrossRefGoogle Scholar
  45. Vinnik L, Farra V (2002) Subcratonic low-velocity layer and flood basalts. Geophys Res Lett 29(4):1049. doi:10.1029/2001GL014064 CrossRefGoogle Scholar
  46. Wang P, de Hoop MV, van der Hilst RD (2008) Imaging of the lowermost mantle (D″) and the core–mantle boundary with SKKS coda waves. Geophys J Int 175:103–115CrossRefGoogle Scholar
  47. Xu L, Rondenay S, van der Hilst RD (2007) Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys Earth Planet Int 165:176–193CrossRefGoogle Scholar
  48. Yilmaz O (2001) Seismic data analysis, 2nd edn. Society of Exploration Geophysicists, Tulsa, OklahomaGoogle Scholar
  49. Yuan X, Kind R, Li X, Wang R (2006) The S receiver functions: synthetics and data example. Geophys J Int 165:555–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations