Surveys in Geophysics

, 30:561 | Cite as

Depth-Recursive Tomography Along the Eger Rift Using the S01 Profile Refraction Data: Tested at the KTB Super Drilling Hole, Structural Interpretation Supported by Magnetic, Gravity and Petrophysical Data

  • Miroslav Novotný
  • Zuzana Skácelová
  • Jan Mrlina
  • Bedřich Mlčoch
  • Bohuslav Růžek


The refraction data from the SUDETES 2003 experiment were used for high-resolution tomography along the profile S01. The S01 profile crosses the zone Erbendorf-Vohenstrauss (ZEV) near the KTB site, then follows the SW–NE oriented Eger Rift in the middle part and continues toward the NE across the Elbe zone and the Sudetic structures as far as the Trans-European Suture Zone. To get the best resolution in the velocity image only the first arrivals of Pg waves with minimum picking errors were used. The previous depth-recursive tomographic method, based on Claerbout’s imaging principle, has been adapted to perform the linearized inversions in iterative mode. This innovative DRTG method (Depth-Recursive Tomography on Grid) uses a regular system of refraction rays covering uniformly the mapped domain. The DRTG iterations yielded a fine-grid velocity model with a required level of RMS travel-time fit and the model roughness. The travel-time residuals, assessed at single depth levels, were used to derive the statistical lateral resolution of “lens-shaped” velocity anomalies. Thus, for the 95% confidence level and 5% anomalies, one can resolve their lateral sizes from 15 to 40 km at the depths from 0 to 20 km. The DRTG tomography succeeded in resolving a significant low-velocity zone (LVZ) bound to the Franconian lineament nearby the KTB site. It is shown that the next optimization of the model best updated during the DRTG iterations tends to a minimum-feature model with sweeping out any LVZs. The velocities derived by the depth-recursive tomography relate to the horizontal directions of wave propagation rather than to the vertical. This was proved at the KTB site where pronounced anisotropic behavior of a steeply tilted metamorphic rock complex of the ZEV unit has been previously determined. Involving a ~7% anisotropy observed for the “slow” axis of symmetry oriented coincidentally in the horizontal SW–NE direction of the S01 profile, the DRTG velocity model agrees fairly well with the log velocities at the KTB site. Comparison with the reflectivity map obtained on the reflection seismic profile KTB8502 confirmed the validity of DRTG velocity model at maximum depths of ~16 km. The DRTG tomography enabled us to follow the relationship of major geological units of Bohemian Massif as they manifested in the obtained P-wave velocity image down to 15 km. Although the contact of Saxothuringian and the Teplá-Barrandian Unit (TBU) is collateral with the S01 profile direction, several major tectonic zones are rather perpendicular to the Variscan strike and so fairly imaged in the S01 cross-section. They exhibit a weak velocity gradient of sub-horizontal directions within the middle crust. In particular, the Moldanubian and TBU contact beneath the Western Krušné hory/Erzgebirge Pluton, the buried contact of the Lusatia unit and the TBU within the Elbe fault zone were identified. The maxima on the 6,100 ms−1 isovelocity in the middle crust delimitated the known ultrabasic Erbendorf complex and implied also two next ultrabasic massifs beneath the Doupovské hory and the České středohoří volcanic complexes. The intermediate mid-crustal P-wave velocity lows are interpreted as granitic bodies. The presented geological model is suggested in agreement with available gravity, aeromagnetic and petrophysical data.


Depth-recursive refraction tomography Lateral resolution Correction for anisotropy Low-velocity zones Optimization Bohemian Massif Eger rift German Continental Deep Drilling Project (KTB) Zone Erbendorf-Vohenstrauss (ZEV) Erbendorf complex 



The authors would like to thank to Dr. S. Vrána of the Czech Geological Survey for his valuable suggestions concerning the geological interpretation. The geological data and map were supported by Research Centre “Advanced Remedial Technologies and Processes”. This study was supported by Project No A300460602 of the Grant Agency of the Academy of Sciences of the Czech Republic. The acquisition of the S01 seismic data within the scope of the SUDETES 2003 Refraction Experiment and their first processing were supported by Research Project No 630/3/02 funded by Ministry of Environment of the Czech Republic. Our thanks belong to the SUDETES 2003 Working Group: M. Behm, T. Bodoky, R. Brinkmann, M. Brož, E. Brückl, W. Czuba, T. Fancsik, B. Forkmann, M. Fort, E. Gaczyński, W. H. Geissler, M. Grad, R. Greschke, A. Guterch, S. Harder, E. Hegedűs, A. Hemmann, P. Hrubcová, T. Janik, G. Jentzsch, G. Kaip, G.R. Keller, K. Komminaho, M. Korn, O. Karousová, M. Majdański, J. Málek, M. Malinowski, K. C. Miller, E.M. Rumpfhuber, A. Špičák, P. Środa, E. Takács, T. Tiira, J. Vozár, M. Wilde-Piórko, J. Yliniemi, A. Żelaźniewicz. The University of Leipzig provided 25 instruments for this project. Sources of financial and infrastructure support: Austria—Institute of Geodesy and Geophysics, Vienna University of Technology; Finnish Academy of Sciences; Germany—German participation was supported by the Friedrich-Schiller-Universität, Jena and the Bundesanstalt für Geologie Wissenschaften und Rohstoffe; Hungary—Eötvös Loránd Geophysical Institute; Poland —Polish Oil and Gas Company, and Institutes of Geophysics of the Polish Academy of Sciences and the University of Warsaw through the Association for Deep Geological Investigations in Poland (ADGIP); Slovak Republic—The Geological Survey and Academy of Sciences provided support; USA—Direct funding was provided by the National Science Foundation and the Texas Higher Education Coordinating Board. IRIS/PASSCAL is supported by the U.S. National Science Foundation and provided the majority of the instrumentation for this experiment, and most of these instruments were provided through grants to the University of Texas at El Paso (State of Texas Higher Education Coordinating Board, NSF/MRI, and the DoD). Last but not least, we thank two anonymous referees for their informed reviews and suggestions which improved the manuscript.


  1. Aki K, Richards PG (1980) Quantitative seismology, vol II. W. H. Freeman and Company, San FranciscoGoogle Scholar
  2. Beránek B, Dudek A (1972) The results of deep seismic sounding in Czechoslovakia. Z Geophys 38:415–427Google Scholar
  3. Brückl E, Bodoky T, Hegedüs E, Hrubcová P, Gosar A, Grad M, Guterch A, Hajnal Z, Keller GR, Špičák A, Sumanovac F, Thybo H, Weber F (2003) ALP 2002 seismic experiment. Stud Geophys Geod 47:671–679CrossRefGoogle Scholar
  4. Bucha V, Blížkovský M (eds) (1994) Crustal structure of the Bohemian Massif and West Carpathians. Academia, Springer Verlag, Prague, Berlin, pp 174–177Google Scholar
  5. Buske S (1999) 3-D Prestack Kirchhoff migration of the ISO89-3D data set. Pure Appl Geophys 156:157–171CrossRefGoogle Scholar
  6. Cajz V, Adamovič J, Rapprich V, Valigurský L (2004) Newly identified faults inside the volcanic complex of the České středohoří Mts., Ohře/Eger Graben, North Bohemia. Acta Geodyn et Geomaterialia 1(2):213–222Google Scholar
  7. Chlupáčová M, Skácelová Z, Nehybka V (2003) P-wave anizotropy of rock from the seismic area in Western Bohemia. J Geodyn 35:45–57 Elsevier Science LtdCrossRefGoogle Scholar
  8. Claerbout JF (1971) Toward a unified theory of reflector mapping. Geophysics 36:467–481CrossRefGoogle Scholar
  9. DEKORP Research Group (1994) The deep seismic reflection profiles DEKORP 3/MVE-90, Z. Geol Wiss 22(6):623–825Google Scholar
  10. Emmermann R, Lauterjung J (1997) The German deep drilling program KTB: overview and major results. J Geophy Res 102(B8):18179–18201CrossRefGoogle Scholar
  11. Fiala J, Vejnar Z (2004) The lithology, geochemistry, and metamorphic gradation of the crystalline basement of the Cheb (Eger) Tertiary Basin, Saxothuringian Unit. Bull Geosci 79(No.1):41–52Google Scholar
  12. Fischer T, Horálek J (2003) Space–time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 2001. J Geodyn 35:125–144CrossRefGoogle Scholar
  13. Geissler WH, Kind R, Kämpf H, Klinge K, Plenefisch T, Zedník J, W-BOHEMIA Working Group (2002) Local Moho updoming beneath the western Eger Rift, Central Europe—results from teleseismic receiver function. Geophys Res Abstr 4 EGS-A-02297Google Scholar
  14. Grad M, Špičák A, Keller GR, Guterch A, Brož M, Brückl E, Hegedüs E (2003) SUDETES 2003 seismic experiment. Stud Geophys Geod 47:681–689CrossRefGoogle Scholar
  15. Grad M, Guterch A, Mazur S, Keller GR, Špičák A, Hrubcová P, Geissler WH (2008) Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment. J Geophys Res 113:B10304. doi: 10.1029/2007JB005497 CrossRefGoogle Scholar
  16. Guterch A, Grad M, Špičák A, Brückl E, Hegedüs E, Keller GR, Thybo H (2003) An overview of recent seismic refraction experiments in central Europe. Stud Geophys Geod 47:651–657CrossRefGoogle Scholar
  17. Harjes HP, Bram K, Dürbaum H, Gebrande H, Hirschmann G, Janik M, Thomas R, Tormann J, Wenzel F (1997) Origin and nature of crustal reflections: results from the integrated seismic measurements at the KTB super-deep drilling site. J Geophys Res 102(B8):18267–18288CrossRefGoogle Scholar
  18. Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys Res Lett 33:L05311. doi: 10.1029/2005GL025158 CrossRefGoogle Scholar
  19. Heuer B, Kämpf H, Kind R, Geissler WH (2007) Seismic evidence for whole litho-sphere separation between Saxothuringian and Moldanubian tectonic units in central Europe. Geophys Res Lett 34:L09304. doi: 10.1029/2006GL029188 CrossRefGoogle Scholar
  20. Hirschmann G (1996) KTB—the structure of a Variscan terrane boundary: seismic investigation-drilling-models. Tectonophysics 264:327–339CrossRefGoogle Scholar
  21. Hobro JWD (1999) Three-dimensional tomographic inversion of combined reflection and refraction seismic travel-time data. PhD Thesis, Department of Earth Sciences, University of CambridgeGoogle Scholar
  22. Hofmann Y, Jahr T, Jentzsch G (2003) Three-dimensional gravimetric modeling to detect the deep structure of the region Vogtland/NW-Bohemia. J Geodyn 35:209–220CrossRefGoogle Scholar
  23. Hole JA (1992) Non-linear high-resolution three-dimensional seismic travel-time tomography. J Geophys Res 97:6553–6562CrossRefGoogle Scholar
  24. Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal, uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000. J Geophys Res 110:B11305CrossRefGoogle Scholar
  25. Jones KA, Warner MR, Morgan RPLI, Morgan JV, Barton PJ, Price CE (1996) Coincident normal-incidence and wide-angle reflections from the Moho: evidence for crustal seismic anisotropy. Tectonophysics 264:205–217CrossRefGoogle Scholar
  26. Kopecký L (1978) Neoidic taphrogenic evolution and young alkaline volcanism of the Bohemian Massif. Sborgeol Věd Geol 31:91–107Google Scholar
  27. Lüschen E, Bram K, Söllner W, Sobolev S (1996) Nature of seismic reflections and velocities from VSP-experiments and borehole measurements at the KTB deep drilling site in southeast Germany. Tectonophysics 264:309–326CrossRefGoogle Scholar
  28. Majdanski M, Grad M, Guterch A, SUDETES 2003 Working Group (2006) 2-D seismic tomographic and ray tracing modeling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data. Tectonophysics 413:249–269CrossRefGoogle Scholar
  29. Majdanski M, Kozlovskaya E, Grad M, SUDETES 2003 Working Group (2007) 3D structure of the Earth’s crust beneath the northern part of the Bohemian Massif. Tectonophysics 437:17–36CrossRefGoogle Scholar
  30. Málek J, Jánský J, Novotný O, Rössler D (2004) Vertically inhomogeneous models of the upper crustal structure in the West-Bohemian seismoactive region inferred from the Celebration 2000 refraction data. Stud Geophys Geod 48:709–730CrossRefGoogle Scholar
  31. Mayerová M, Novotný M, Fejfar M (1994) Deep seismic sounding in Czechoslovakia. In: Bucha V, Bližkovský M (eds) Crustal Structure of the Bohemian Massif and West Carpathians. Academia, PragueGoogle Scholar
  32. Mlčoch B (2003) Character of the contact between the Saxothuringian and Teplá-Barrandian Unit. Geolines 16, A-75-1, ISSN 1210-9603Google Scholar
  33. Mrlina J, Cajz V (2006) Subsurface structure of the volcanic centre of the České středohoří Mts, North Bohemia, determined by geophysical surveys. Stud Geophys Geod 50(1):75–88CrossRefGoogle Scholar
  34. Neunhöfer H, Meier T (2004) Seismicity in the Vogtland/Western Bohemia earthquake region between 1962 and 1998. Stud Geophys Geod 48:539–562CrossRefGoogle Scholar
  35. Novotný M (1981) Two methods of solving the linearized 2D inverse seismic kinematic problems. J Geophys 50:7–15Google Scholar
  36. Novotný M (2007) High resolution refraction tomography, abstract book, IUGG, Perugia, July 2–13, 2007Google Scholar
  37. Novotný M, Brož M, Hrubcová P, Karousová O, Špičák A, Švancara J, ALP Working Group and SUDETES Working Group (2004) SLICE—Seismic Lithospheric Investigation of Central Europe (in Czech). Technical report, Czech Geological Survey—GeofondGoogle Scholar
  38. Novotný M, Špičák A (2005) Recursive refraction tomography of the Bohemian Massif—evaluating macroanisotropy at the KTB site. Abstract book, IASPEI, Chile, October 2–8, 2005Google Scholar
  39. Novotný O, Grad M, Grad M, Lund CE, Urban L (1997) Verification of the lithospheric structure along profile Uppsala–Prague using surface wave dispersion. Stud Geophys Geod 41:15–28CrossRefGoogle Scholar
  40. Okaya D, Rabbel W, Beilecke T, Hasenclever J (2004) P wave material anisotropy of a tectono-metamorphic terrane: an active source seismic experiment at the KTB super-deep drill hole, southeast Germany. Geophys Res Lett 31:L24620. doi: 101029/2004GL020855 CrossRefGoogle Scholar
  41. Rabbel W, Beilecke T, Bohlen T, Fischer D, Frank A, Hasenclever J, Borm G, Kück J, Bram K, Druivenga G, Lüschen E, Gebrande H, Pujol J, Smithson S (2004) Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): seismic close-up view of a major thrust zone down to 85 km depth. J Geophys Res 109:B09309CrossRefGoogle Scholar
  42. Rapprich V, Holub FV (2008) Geochemical variations within the upper Oligocene–lower Miocene lava succession of Úhošť Hill (NE margin of Doupovské hory Mts, Czech Republic). Geol Q 52(3):253–268Google Scholar
  43. Růžek B, Hrubcová P, Novotný M, Špičák A, Karousová O (2007) Inversion of travel times obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 and SUDETES 2003. Stud Geophys Geod 51:141–164CrossRefGoogle Scholar
  44. Šalanský K (1995) Magnetic map of the Czech Republic 1:500 000. Czech Geological Survey, PragueGoogle Scholar
  45. Sedlák J, Gnojek I, Zabadal S, Farbisz J, Cwojdzinski S, Scheibe R (2007) Geological interpretation of a gravity low in the central part of the Lugian unit. J Geosci 52:181–198CrossRefGoogle Scholar
  46. Štemprok M, Seifert T, Holub FV, Chlupáčová M, Dolejš D, Novák JK, Pivec E, Lang M (2008) Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic. J Geosci 53:65–104CrossRefGoogle Scholar
  47. Švancara J, Chlupáčová M (1997) Density model of geological structure along the profile 9HR. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:32–36, PragueGoogle Scholar
  48. Švancara J, Gnojek I, Hubatka F, Dědáček K (2000) Geophysical field pattern in the West Bohemian geodynamic active area. Stud Geophys Geod 44:307–326CrossRefGoogle Scholar
  49. Tomek Č, Dvořáková V, Vrána S (1997) Geological interpretation of the 9HR and 503 M seismic profiles in western Bohemia. J Geol Sci 47:43–51 PragueGoogle Scholar
  50. Ulrych J, Cajz V, Adamovič J (eds) (1998) Magmatism and roft basin evolution Excursion guide Abstracts Czech Geological Survey, Prague, 98 ppGoogle Scholar
  51. Vrána S, Cháb J, Štědrá V (1997) Main results of the project, In: Vrána S, Štědrá V (eds) Geological model of Western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:15–23, PragueGoogle Scholar
  52. Wilde-Piórko M, Saul J, Grad M (2005) Differences in the crustal and uppermost mantle structures of the Bohemian Massif from teleseismic receiver functions. Stud Geophys Geod 49:85–107CrossRefGoogle Scholar
  53. Zelt CA (1994) Software package ZPLOT. Bullard Laboratories, University of Cambridge, CambridgeGoogle Scholar
  54. Zelt CA (1999) Modelling strategies and model assessment for wide-angle seismic travel time data. GJI 139:183–204CrossRefGoogle Scholar
  55. Ziegler PA (1994) Cenozoic rift system of Western and Central Europe: an overview. Geol Mijnbouw 73:7–59Google Scholar
  56. Zulauf G, Bues C, Dörr W, Vejnar Z (2002) 10 km Minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci (Geol Rundsch) 91:850–864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Miroslav Novotný
    • 1
  • Zuzana Skácelová
    • 2
  • Jan Mrlina
    • 1
  • Bedřich Mlčoch
    • 2
  • Bohuslav Růžek
    • 1
  1. 1.Institute of GeophysicsAcademy of Science of Czech RepublicPragueCzech Republic
  2. 2.Czech Geological SurveyPragueCzech Republic

Personalised recommendations