Skip to main content
Log in

Heat Transport Processes in the Earth’s Crust

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The heat of the Earth derives from internal and external sources. A heat balance shows that most of the heat provided by external sources is re-emitted by long-wavelength heat radiation and that the dominant internal sources are original heat and heat generated by decay of unstable radioactive isotopes. Understanding of the thermal regime of the Earth requires appreciation of properties and mechanisms for heat generation, storage, and transport. Both experimental and indirect methods are available for inferring the corresponding rock properties. Heat conduction is the dominant transport process in the Earth’s crust, except for settings where appreciable fluid flow provides a mechanism for heat advection. For most crustal and mantle rocks, heat radiation becomes significant only at temperatures above 1200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. For an update see also: http://www.geophysik.rwth-aachen.de/html/perm.htm.

References

  • Adams JS, Gasparini P (1970) Gamma-ray spectrometry of rocks. Elsevier, Amsterdam

    Google Scholar 

  • Adams JAS, Weaver CE (1958) Thorium to uranium ratios as indicators of sedimentary processes: examples of the concept of geochemical facies. Am Assoc Pet Geol Bull 42:387–430

    Google Scholar 

  • Anonymous (2002) World Energy Outlook 2002, International Energy Agency (IEA), Paris (recent statistics: see: http://library.iea.org/Textbase/publications/index.asp)

  • Beardsmore GR, Cull JP (2001) Crustal heat flow. Cambridge University Press, Cambridge

    Google Scholar 

  • Beck AE (1988) Methods for determining thermal conductivity and thermal diffusivity. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 87–124

    Google Scholar 

  • Birch F (1954) Heat from radioactivity. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 148–174

    Google Scholar 

  • Birch F (1966) Section 7: compressibility; elastic constants. In: Clark Jr SP (ed) Handbook of physical constants, rev. ed., Memoir 97, Geol Soc of America, pp 97–173

  • Brown GC (1993) The inaccessible earth, 2nd edn. Chapman and Hall, London

  • Brown ME (2001) Introduction to thermal analysis: techniques and applications (Hot topics in thermal analysis and calorimetry). Kluwer Academic Publishers, Dordrecht

  • Bruggeman DAG (1935) Berechnung verschiedener Konstanten von heterogenen Substanzen – I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 24:636–679. doi:10.1002/andp.19354160705

    Article  Google Scholar 

  • Bücker C, Rybach L (1996) A simple method to determine heat production from gamma-ray logs. Mar Pet Geol 13:373–375. doi:10.1016/0264-8172(95)00089-5

    Article  Google Scholar 

  • Clauser C (1988) Opacity – the concept of radiative thermal conductivity. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 143–165

    Google Scholar 

  • Clauser C (ed) (2003) Numerical simulation of reactive flow in hot aquifers using SHEMAT/processing Shemat. Springer, Berlin

    Google Scholar 

  • Clauser C (2006) Geothermal Energy. In: Heinloth K (ed) Landolt-Börnstein, Group VIII: “advanced materials and technologies”, vol 3 “Energy technologies”, subvol. C: “renewable energies”. Springer, Heidelberg, pp 480–595

    Google Scholar 

  • Clauser C, Griesshaber E, Neugebauer HJ (2002) Decoupled thermal and mantle helium anomalies – implications for the transport regime in continental rift zones. J Geophys Res 107(B11):2269. doi:10.1029/2001JB000675

    Article  Google Scholar 

  • Crain ER (1986) The log analysis handbook, quantitative log analysis methods series, vol 1. Pennwell Publishing, Tulsa

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356

    Google Scholar 

  • Emsley J (1989) The elements. Clarendon Press, Oxford

    Google Scholar 

  • Hamza VM, Beck AE (1972) Terrestrial heat flow, the Neutrino problem, and a possible energy source in the core. Nature 240(5380):343–344. doi:10.1038/240343a0

    Article  Google Scholar 

  • Hartmann A, Rath A, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42:1042–1055. doi:10.1016/j.ijrmms.2005.05.015

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131

    Article  Google Scholar 

  • Hemminger WF, Cammenga HK (1989) Methoden der thermischen Analyse. Springer, Berlin

    Google Scholar 

  • Hofmeister AM (1999) Mantle values therm conductivity geotherm phonon lifetimes. Science 283:1699–1706

    Article  Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76(5):1278–1308. doi:10.1029/JB076i005p01278

    Article  Google Scholar 

  • Horai K (1991) Thermal conductivity of Hawaiian Basalt: a new interpretation of Robertson and Peck’s data. J Geophys Res 96(B3):4125–4132. doi:10.1029/90JB02452

    Article  Google Scholar 

  • Hurter SJ, Hänel R (eds) (2002) Atlas of geothermal resources in Europe. Publication No. EUR 17811, European Commission Office for Official Publications of the European Communities, Luxemburg

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Kappelmeyer O, Haenel R (1974) Geothermics with special reference to application. Bornträger, Berlin

    Google Scholar 

  • Kelley K (1960) Contributions to the data on theoretical metallurgy: XIII high-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. U.S. Bureau of Mines Bull. 584, U.S. Government Printing Office, Washington DC

  • Lowrie W (1997) Fundamentals of geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Marsily G de (1986) Quantitative hydrogeology. Academic Press, Orlando

  • Meschede D (ed) (2006) Gerthsen Physik, 23rd edn. Springer, Berlin

    Google Scholar 

  • Mottaghy DC, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401(1–2):119–142. doi:10.1016/j.tecto.2005.03.005

    Article  Google Scholar 

  • Pape H, Clauser C, Iffland J (1999) Permeability prediction for reservoir sandstones based on fractal pore space geometry. Geophysics 64(5):1447–1460. doi:10.1190/1.1444649

    Article  Google Scholar 

  • Pape H, Clauser C, Iffland J (2000) Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model. Pure Appl Geophys 157:603–619. doi:10.1007/PL00001110

    Article  Google Scholar 

  • Pape H, Clauser C, Iffland J, Krug R, Wagner R (2005) Anhydrite cementation and compaction in geothermal reservoirs: interaction of pore-space structure with flow, transport, P-T-conditions, and chemical reactions. Int J Rock Mech Min Sci 42:1056–1069. doi:10.1016/j.ijrmms.2005.05.007

    Article  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280. doi:10.1029/93RG01249

    Article  Google Scholar 

  • Rybach L (1988) Determination of heat production rate. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 125–142

    Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature related behavior of rock/fluid systems. Elsevier, Amsterdam

    Google Scholar 

  • Stacey FD (1992) Physics of the Earth, 2nd edn. Brookfield Press, Brisbane

    Google Scholar 

  • Tipler PA, Mosca GP (2007) Physics for scientists and engineers: extended version. Palgrave Macmillan, Basingstoke

    Google Scholar 

  • Uyeda S (1988) Geodynamics. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 317–351

    Google Scholar 

  • Watt DE, Ramsden D (1964) High sensitivity counting techniques. Pergamon Press, London

    Google Scholar 

  • Williams CF, Anderson RA (1990) Thermophysical properties of the Earth’s crust: in situ measurements from continental and ocean drilling. J Geophys Res 95(B6):9209–9236. doi:10.1029/JB095iB06p09209

    Article  Google Scholar 

  • Wohlenberg J (1982a) Density of minerals. In: Hellwege K-H (ed) Landolt-Börnstein, group V: Geophysics vol 1: physical properties of rocks, subvol. A. Springer, Berlin, pp 66–113

    Google Scholar 

  • Wohlenberg J (1982b) Density of rocks. In: Hellwege K-H (ed) Landolt-Börnstein, group V: Geophysics Vol 1: physical properties of rocks, subvol. A. Springer, Berlin, pp 113–120

    Google Scholar 

  • Zimmerman RW (1984) The effect of pore structure on the pore and bulk compressibilities of consolidated sandstones. Ph.D. thesis, University of California, Berkeley, CA

  • Zimmerman RW (1989) Thermal conductivity of fluid-saturated rocks. J Petrol Sci Eng 3(3):219–227. doi:10.1016/0920-4105(89)90019-3

    Article  Google Scholar 

Download references

Acknowledgements

Ladsi Rybach and Eva Schill provided suggestions and commentaries which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Clauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauser, C. Heat Transport Processes in the Earth’s Crust. Surv Geophys 30, 163–191 (2009). https://doi.org/10.1007/s10712-009-9058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9058-2

Keywords

Navigation