Advertisement

Surveys in Geophysics

, Volume 29, Issue 4–5, pp 361–374 | Cite as

Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review

  • G. Ramillien
  • J. S. Famiglietti
  • J. Wahr
Original Paper

Abstract

Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.

Keywords

Global hydrology GRACE satellite gravimetry Water mass balances 

Notes

Acknowledgements

We thank two anonymous reviewers for their helpful comments and suggestions that enabled the improvement of the manuscript. This work was supported in part by the NNG04GE99G and JPL-REASON1259524 grants.

References

  1. Agência National de Agua (ANA) (2006) Bacía do rio Amazonas: informações sobre a bacía. Data available on request at: http://www.ana.gov.br
  2. Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:18CrossRefGoogle Scholar
  3. Bettadpur S (2007) Level-2 gravity field product user handbook, GRACE, 327–734, GRACE Proj Cent for Space Res, University of Texas, AustinGoogle Scholar
  4. Bettadpur S, Watkins M (2000) GRACE gravity science & its impact on mission design, AGU Spring 2000, GP51C-11, http://www.csr.utexas.edu/grace/publications
  5. Biancale R, Lemoine J-M, Balmino G, Loyer S, Bruisma S, Pérosanz F, Marty J-C and Gégout P (2006) 3 years of geoid variations from GRACE and LAGEOS data at 10-day intervals from July 2002 to March 2005, CNES/GRGS product data available on CD-ROMGoogle Scholar
  6. Carrère L, Lyard F (2003) Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys Res Lett 30(6):1275CrossRefGoogle Scholar
  7. Chen J, Rodell M, Wilson CR, Famiglietti JS (2005a) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32:L14405. doi: 10.1029/2005GL022964 CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2005b) Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, Solid Earth 110:B08408. doi: 10.1029/2004JB003536 CrossRefGoogle Scholar
  9. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006a) Antarctic mass rates from GRACE. Geophys Res Lett 33:L11502. doi: 10.1029/2006GL026369 CrossRefGoogle Scholar
  10. Chen JL, Tapley BD, Wilson CR (2006b) Alaskan mountain glacial melting observed by satellite gravimetry, 248(1–2):368–378. doi:  10.1016/j.epsl.2006.05.039
  11. Chen JL, Wilson CR, Tapley BD, Blanckenship DD, Ivins ER (2007) Patagonia ice field melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34:L22501. doi: 10.1029/2007GL031871 CrossRefGoogle Scholar
  12. Chen JL, Wilson CR, Tapley BD, Blanckenship D, Young D (2008) Antarctic regional ice loss rates from GRACE. EPSL 266(1–2):140–148. doi: 10.1016/j.epsl.2007.10.057 CrossRefGoogle Scholar
  13. Crossley D, Hinderer J, Boy J-P (2005) Time-variation of the European gravity field from superconducting gravimeters. Geophys J Int 161(2):257–264. doi: 10.1111/j.1365-246X.2005.02586.x CrossRefGoogle Scholar
  14. Davis JL, Elósegui P, Mitrovica JX, Tamisiea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31:L24605. doi: 10.1029/2004GL021435 CrossRefGoogle Scholar
  15. Dickey J et al (1997) Satellite Gravity and the Geosphere: contribution to the study of the Solid Earth and its envelope. National Research Council (NRC), National Academy Press, Washington DCGoogle Scholar
  16. Döll PF, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  17. Famiglietti JS (2004) Remote sensing of terrestrial water storage, soil moisture and surface waters. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph Series, vol 150. American Geophysical Union (AGU), Washington DC, pp 197–207Google Scholar
  18. Frappart F, Ramillien G, Biancamaria S, Mognard-Campbell N, Cazenave A (2006a) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33:L02501. doi: 10.1029/2005GL024778 CrossRefGoogle Scholar
  19. Frappart F, Dominh K, Lhermitte J, Ramillien G, Cazenave A, LeTaon T (2006b) Water volume change in the lower Mekong basin from satellite altimetry and imagery data. Geophys J Int 167:570–584CrossRefGoogle Scholar
  20. Garcia RV (2002) Local geoid determination from GRACE mission, Report 43210–1275. Ohio State University, ColumbusGoogle Scholar
  21. GRACE Science Mission Requirement Document (2000) GRACE 327–720, June 2000Google Scholar
  22. Han SC (2004) Efficient determination of global gravity field from satellite-to-satellite tracking mission GRACE. Celest Mech Dyn Astron 88:69–102CrossRefGoogle Scholar
  23. Han SC, Jekeli C, Shum CK (2003) Static and temporal gravity field recovery using GRACE potential difference observables. Adv Geosci 1:19–26CrossRefGoogle Scholar
  24. Han SC, Shum CK, Jekeli C et al (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32:L07302. doi: 10.1029/2005GL02238 CrossRefGoogle Scholar
  25. Han SC, Rowlands DD, Luthcke SB, Lemoine FG (2008) Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J Geophys Res 113:B06401. doi: 10.1029/2007JB005218 CrossRefGoogle Scholar
  26. Hinderer J, Andersen O, Lemoine F, Crossley D, Boy J-P (2006) Seasonal changes in European gravity field from GRACE: a comparison with superconducting gravimeters and hydrology model predictions. J Geodyn 41(1–3):59–68. doi: 10.1016/j.jog.2005.08.037 CrossRefGoogle Scholar
  27. Hirschi M, Seneviratne SI, Schär C (2006) Seasonal variations in terrestrial water storage for major midlatitude river basins. J Meteorol 7(1):39–60. doi: 10.1175/JHM480.1 CrossRefGoogle Scholar
  28. Ivins E, James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17:541–553. doi: 10.1017/S0954102005002968 CrossRefGoogle Scholar
  29. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep. 327, Dep. of Geod. and Sci. and Surv., Ohio State UnivGoogle Scholar
  30. Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 7582:85–101CrossRefGoogle Scholar
  31. Leblanc M, Tregoning P, Ramillien G, Tweed SO and Fakes A (2008) Basin-sacle, integrated observations of the 21st Century multi-year drought in southeast Australia, WRR (in revision)Google Scholar
  32. Lemoine FG, Luthcke SB, Rowlands DD (2007a) The use of mascons to resolve time-variable gravity from GRACE, Dynamic Planet, 130, IAG Symposia, Springer Berlin Heidelberg. doi:  10.1007/978-3-540-49349-5
  33. Lemoine J-M, Bruisma S, Loyer S, Biancale R, Marty J-C, Pérosanz F, Balmino G (2007b) Temporal gravity field models inferred from GRACE data. Adv Space Res. doi:  10.1016/j.asr.2007.03.062 Google Scholar
  34. Lettenmaier DP, Famiglietti JS (2006) Water from on high. Nature 444:562–563CrossRefGoogle Scholar
  35. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289CrossRefGoogle Scholar
  36. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585. doi: 10.1007/s00190-005-0014-8 CrossRefGoogle Scholar
  37. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  38. Ngo-Duc T, Laval K, Polcher J, Ramillien G, Cazenave A (2007) Validation of the land water storage simulated by Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resources Res 43:W04427. doi: 10.1029/2006WR004941 CrossRefGoogle Scholar
  39. Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE, Su H (2007a) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112:D07103. doi: 10.1029/2006JD007522 CrossRefGoogle Scholar
  40. Niu G-Y, Seo K-W, Yang Z-L, Wilson C, Hua S, Chen J, Rodell M (2007b) Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophys Res Lett 34:L15704. doi: 1.1029/2007GL030413 CrossRefGoogle Scholar
  41. Papa F, Günter A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Am Geophys Union 35:L11401. doi: 10.1029/2008GL033857 Google Scholar
  42. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826CrossRefGoogle Scholar
  43. Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235(1–2):283–301CrossRefGoogle Scholar
  44. Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Remy F, Biancale R (2006a) Interannual variations of ice sheets mass balance from GRACE and sea level. Global Planet Change 53:198–208CrossRefGoogle Scholar
  45. Ramillien G, Frappart F, Güntner A, Ngo-Duc T, Cazenave A (2006b) Mapping time variations of evapotranspiration rate from GRACE satellite gravimetry. Water Resources Res 42:W10403. doi: 10.1029/2005WR004331 CrossRefGoogle Scholar
  46. Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Global Planet Change 60:381–392. doi: 10.1016/j.gloplacha.2007.04.002 CrossRefGoogle Scholar
  47. Rodell M, Famiglietti J (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2723CrossRefGoogle Scholar
  48. Rodell M, Famiglietti J (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37(5):1327–1339CrossRefGoogle Scholar
  49. Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256CrossRefGoogle Scholar
  50. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004a) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi: 10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  51. Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004b) Basin scale estimates of evapotranspiration using GRACE and other observation. Geophys Res Lett 31:L20504. doi: 10.1029/2004GL020873 CrossRefGoogle Scholar
  52. Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi: 10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  53. Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a mapping mission. J Geod 76:307–316. doi: 10.1007/s.00190-002-0255-8 CrossRefGoogle Scholar
  54. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310. doi: 10.1029/2004GL022386 CrossRefGoogle Scholar
  55. Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geod 78(7–8):442–456CrossRefGoogle Scholar
  56. Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W05417. doi: 10.1029/2005WR004255 CrossRefGoogle Scholar
  57. Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wunsch J (2006) GRACE observations of changes in continental water storage. Global Planet Change 50(1–2):112–126. doi: 10.1016/j.gloplacha.2004.11.018 CrossRefGoogle Scholar
  58. Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from High Plains Aquifer (USA). Geophys Res Lett 34:L14402. doi: 10.1029/2007GL030139 CrossRefGoogle Scholar
  59. Swenson S, Milly PCD (2006) Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resources Res 42:W03201. doi: 10.1029/2005WR004628 CrossRefGoogle Scholar
  60. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res, Solid Earth 107(B9):2193. doi: 10.1029/2001JB000576 CrossRefGoogle Scholar
  61. Swenson S, Wahr J (2003) Monitoring changes in continental water storage with GRACE. Space Sci Rev 108(1–2):345–354CrossRefGoogle Scholar
  62. Swenson S, Wahr J (2006a) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravimetry measurements. J Hydrometeorol 7(2):252–270. doi: 10.1175/JHM478.1 CrossRefGoogle Scholar
  63. Swenson S, Wahr J (2006b) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 CrossRefGoogle Scholar
  64. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resources Res 39(8):1223. doi: 10.1029/2002WR001808 CrossRefGoogle Scholar
  65. Swenson SC, Yeh PJ-F, Wahr J, Famiglietti JS (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401. doi: 10.1029/2006GL026962 CrossRefGoogle Scholar
  66. Swenson S, Famiglietti J, Basara J, Wahr J (2008) Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour Res 44:W01413. doi: 10.1029/2007WR006057 CrossRefGoogle Scholar
  67. Syed T, Famiglietti J, Chen J, Rodell M, Seneviratne S, Viterbo P, Wilson C (2005) Total basin discharge for the Amazon and the Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:24404. doi: 10.1029/2005GL024851 CrossRefGoogle Scholar
  68. Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. doi: 10.1029/2007GL031254 CrossRefGoogle Scholar
  69. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008a) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi: 10.1029/2006WR005779 CrossRefGoogle Scholar
  70. Syed TH, Famiglietti JS, Chambers D (2008b) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol. doi: 10.1175/2008JHM993.1
  71. Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi: 10.1029/2005GL023961 CrossRefGoogle Scholar
  72. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004a) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  73. Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004b) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  74. Thomas J (1999) An analysis of gravity field estimation based on inter-satellite dual one-way biased ranging. JPL Publication 98–15, pp 3–13Google Scholar
  75. Velicogna I, Wahr J (2002) A method for separating Antarctic post glacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment and GPS satellite data. J Geophys Res 107(B10):2263. doi: 10.1029/2001JB000708 CrossRefGoogle Scholar
  76. Velicogna I, Wahr J (2005) Ice mass balance in Greenland from GRACE. Geophys Res Lett 32(18):L18505. doi: 10.1029/2005GL023955 CrossRefGoogle Scholar
  77. Velicogna I, Wahr J (2006a) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(5768):1754–1756CrossRefGoogle Scholar
  78. Velicogna I, Wahr J (2006b) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  79. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229CrossRefGoogle Scholar
  80. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11):L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar
  81. Wilson MD, Bates PD, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally-flooded wetlands. Geophys Res Lett 34:L15404. doi: 10.1029/2007GL030156 CrossRefGoogle Scholar
  82. Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment. Water Resources Res 42:W12203. doi: 10.1029/2006WR005374 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.LEGOS, UMR5566 CNRS/CNES/IRDToulouseFrance
  2. 2.Earth System ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Department of Physics, CIRESUniversity of ColoradoBoulderUSA

Personalised recommendations