Advertisement

Primary singularities of vector fields on surfaces

  • M. W. Hirsch
  • F. J. TurielEmail author
Original Paper
  • 5 Downloads

Abstract

Unless another thing is stated one works in the \(C^\infty \) category and manifolds have empty boundary. Let X and Y be vector fields on a manifold M. We say that Y tracks X if \([Y,X]=fX\) for some continuous function \(f:M\rightarrow \mathbb {R}\). A subset K of the zero set \({\mathsf {Z}} (X)\) is an essential block for X if it is non-empty, compact, open in \({\mathsf {Z}}(X)\) and its Poincaré-Hopf index does not vanishes. One says that X is non-flat at p if its \(\infty \)-jet at p is non-trivial. A point p of \({\mathsf {Z}}(X)\) is called a primary singularity of X if any vector field defined about p and tracking X vanishes at p. This is our main result: consider an essential block K of a vector field X defined on a surface M. Assume that X is non-flat at every point of K. Then K contains a primary singularity of X. As a consequence, if M is a compact surface with non-zero characteristic and X is nowhere flat, then there exists a primary singularity of X.

Keywords

Vector field Singularity Zero set Essential block Surface 

Mathematics Subject Classification

20F16 58J20 37F75 37O25 54H25 

Notes

References

  1. 1.
    Belliart, M.: Actions sans points fixes sur les surfaces compactes. Math. Z. 225, 453–465 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonatti, C.: Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zéros communs. Bol. Soc. Brasil Mat. N.S. 22, 215–247 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonatti, C., De Santiago, : Existence of common zeros for commuting vector fields on 3-manifolds. Ann. Inst. Fourier 67(4), 1741–1781 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hirsch, M.W.: Differential Topology. Springer, New York (1976)CrossRefGoogle Scholar
  5. 5.
    Hirsch, M.W.: Common zeroes of families of smooth vector fields on surfaces. Geom. Dedicata 182, 43–49 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hirsch, M.W., Turiel, F.J.: Zero sets of Lie algebras of analytic vector fields on real and complex 2-dimensional manifolds. Ergod. Theory Dyn. Syst. 39, 954–979 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hirsch, M.W., Turiel, F.J.: Primary singularities of vector fields on surfaces (2018). arXiv:1807.04533
  8. 8.
    Hounie, J.: Minimal sets of families of vector fields on compact surfaces. J. Differ. Geom. 16, 739–744 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1963)zbMATHGoogle Scholar
  10. 10.
    Lima, E.: Common singularities of commuting vector fields on 2-manifolds. Comment. Math. Helv. 39, 97–110 (1964)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Plante, J.: Fixed points of Lie group actions on surfaces. Ergod. Theory Dyn. Syst. 6, 149–161 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schwartz, A.J.: A generalization of a Poincaré–Bendixson theorem to closed two-manifolds. Am. J. Math. 85, 453–458 (1963)CrossRefGoogle Scholar
  13. 13.
    Turiel, F.-J.: Smooth actions of \(Aff^+({\mathbb{R}})\) on compact surfaces with no fixed point: an elementary construction (2016). arXiv:1602.05736

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Wisconsin at Madison and University of California at BerkeleyCross PlainsUSA
  2. 2.Geometría y Topología, Facultad de CienciasMálagaSpain

Personalised recommendations