Advertisement

On very stablity of principal G-bundles

  • Hacen ZelaciEmail author
Original Paper
  • 16 Downloads

Abstract

Let X be a smooth irreducible projective curve. In this note, we generalize the main result of Pauly and Peón-Nieto (Geometriae Dedicata 1–6, 2018) to principal G-bundles for any reductive linear algebraic group G. After defining very stability of principal G-bundles, we show that this definition is equivalent to the fact that the Hitchin fibration restricted to the space of Higgs fields on that principal bundle is finite. We also study the relation between very stability and other stability conditions in the case of \(\text {SL}_2\)-bundles.

Keywords

Principal bundles Very stability Finiteness of the Hitchin map 

Mathematics Subject Classification (2010)

Primary 14H60 14H70 

Notes

References

  1. 1.
    Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. Lond. Math. Soc. 49(2), 219–231 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dieudonné, J., and Grothendieck, A.: Eléments de géométrie algébrique IV, Etude locale des schémas et des morphismes de schémas. Publications mathématiques de l’I.H.É.S (1967)Google Scholar
  3. 3.
    Faltings, G.: Stable \(G\)-bundles and projective connections. J. Algebr. Geom. 2(3), 507–568 (1993)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hyeon, D., Murphy, D.: Note on the stability of principal bundles. Proc. Am. Math. Soc. 132, 2205–2213 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kostant, Bertram: Lie group representations on polynomial rings. Am. J. Math. 85(3), 327–404 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Laumon, G.: Un analogue global du cône nilpotent. Duke Math. J. 57(2), 647–671 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Narasimhan, M.S., Ramanan, S.: Generalised Prym varieties as fixed points. J. Indian Math. Soc. 39(1–4), 1–19 (1975)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pal, S., and Pauly, C.: The wobbly divisors of the moduli space of rank-2 vector bundles (2018). Preprint arXiv:1803.11315
  10. 10.
    Pauly, C., Peón-Nieto, A.: Very stable bundles and properness of the Hitchin map. Geometriae Dedicata 198, 1–6 (2018)MathSciNetGoogle Scholar
  11. 11.
    Ramanathan, A.: Moduli for principal bundles over algebraic curves: I. Proc. Indian Acad. Sci. (Math. Sci.) 106, 301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zelaci, H.: Hitchin systems for invariant and anti-invariant vector bundles (2016). Preprint arXiv:1612.06910

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mathematical Institute of the University of BonnBonnGermany

Personalised recommendations