Advertisement

ACM line bundles on polarized K3 surfaces

  • Kenta WatanabeEmail author
Original Paper
  • 9 Downloads

Abstract

An ACM bundle on a polarized algebraic variety is defined as a vector bundle whose intermediate cohomology vanishes. We are interested in ACM bundles of rank one with respect to a very ample line bundle on a K3 surface. In this paper, we give a necessary and sufficient condition for a non-trivial line bundle \({\mathcal {O}}_X(D)\) on X with \(|D|\ne \emptyset \) and \(D^2\ge L^2-6\) to be an ACM and initialized line bundle with respect to L, for a given K3 surface X and a very ample line bundle L on X.

Keywords

ACM line bundle K3 surface Curve 

Mathematics Subject Classification (2010)

14J70 14J28 14J60 

Notes

Acknowledgements

The author would like to thank the referee for the creative suggestions and some helpful comments. The author is partially supported by Grant-in-Aid for Scientific Research (16K05101), Japan Society for the Promotion Science.

References

  1. 1.
    Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O.: Cohen–Macaulay modules on hypersurface singularities II. Inv. Math. 88, 165–182 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barth, W., Peters, C., van de Ven, A.: Compact Complex Surfaces. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Casnati, G.: Rank two aCM bundles on general determinantal quartic surfaces in \({\mathbb{P}}^3\). Annali Dell’Universita di Ferrara. 63, 51–73 (2017)CrossRefzbMATHGoogle Scholar
  4. 4.
    Casanellas, M., Hartshorne, R.: ACM bundles on cubic surfaces. J. Eur. Math. 13, 709–731 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Huybrechts, D.: Lectures on K3 Surfaces. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Johnsen, T., Knutsen, A.L.: K3 projective models in scrolls. In: Lecture Notes in Mathematics, vol. 1842. Springer, Berlin (2004)Google Scholar
  7. 7.
    Knörrer, H.: Cohen–Macaulay modules on hypersurface singularities I. Inv. Math. 88(1), 153–164 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Knutsen, A.L.: On kth order embeddings of K3 surfaces and Enriques surfaces. Manuscr. Math. 104, 211–237 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mori, S., Mukai, S.: The uniruledness of the moduli space of curves of genus 11. In: Algebraic Geometry, Lecture Notes in Math. vol. 1016, Springer, Berlin, pp. 334–353 (1983)Google Scholar
  10. 10.
    Ottaviani, G.: Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadric. Ann. Mat. Pura Appl. 4(155), 317–341 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pons-Llopis, J., Tonini, F.: ACM bundles on DelPezzo surfaces. Le Mat. 64, 177–211 (2009)zbMATHGoogle Scholar
  12. 12.
    Saint-Donat, B.: Projective Models of K3 surfaces. Am. J. Math. Ann. 96(4), 602–639 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Watanabe, K.: The classification of ACM line bundles on quartic hypersurfaces in \({\mathbb{P}}^3\). Geom. Dedic. 175, 347–354 (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nihon University, College of Science and TechnologyFunabashi cityJapan

Personalised recommendations