Metric foliations of homogeneous three-spheres
Original Paper
First Online:
- 7 Downloads
Abstract
A smooth foliation of a Riemannian manifold is metric when its leaves are locally equidistant and is homogeneous when its leaves are locally orbits of a Lie group acting by isometries. Homogeneous foliations are metric foliations, but metric foliations need not be homogeneous foliations. We prove that a homogeneous three-sphere is naturally reductive if and only if all of its metric foliations are homogeneous.
Keywords
Homogeneous spaces Naturally reductive space Metric foliationsMathematics Subject Classification
53C12 57R30 53C30Notes
References
- 1.Brown, N., Finck, R., Spencer, M., Tapp, K., Wu, Z.: Invariant metrics with nonnegative curvature on compact Lie groups. Canad. Math. Bull. 50(1), 24–34 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Florit, L., Goertsches, O., Lytchak, A., Toeben, D.: Riemannian foliations on contractible manifolds. Muenster J. Math. 8, 1–16 (2015)MathSciNetzbMATHGoogle Scholar
- 3.Ghys, É.: Feuilletages riemanniens sur les variétés simplement connexes. Ann. Inst. Fourier (Grenoble) 34(4), 202–223 (1984)CrossRefzbMATHGoogle Scholar
- 4.Gromoll, D., Grove, K.: The low-dimensional metric foliations of Euclidean spheres. J. Differ. Geom. 28(1), 143–156 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Gromoll, D., Tapp, K.: Nonnegatively curved metrics on \(S^2 \times \mathbb{R}\). Geom. Dedicata 99, 127–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Gromoll, D., Walschap, G.: Metric fibrations in Euclidean space. Asian J. Math. 1(4), 716–728 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Gromoll, D., Walschap, G.: The metric fibrations of Euclidean space. J. Differ. Geom. 57(2), 233–238 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Kerin, M., Shankar, K.: Riemannian submersions from simple, compact Lie groups. Muenster J. Math. 5, 25–40 (2012)MathSciNetzbMATHGoogle Scholar
- 9.Lee, K.B., Yi, S.: Metric foliations on hyperbolic space. J. Korean Math. Soc. 48(1), 63–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Lytchak, A., Wilking, B.: Riemannian foliations of spheres. Geom. Topol. 20(3), 1257–1274 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Munteanu, M.: One-dimensional metric foliations on compact Lie groups. Mich. Math. J. 54(1), 25–32 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Munteanu, M.: One-dimensional metric foliations on the Heisenberg Group. Proc. Am. Math. Soc. 134(6), 1791–1802 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Novikov, S.P.: The topology of foliations. (Russian). Trudy Moskov. Mat. Obsc. 14, 248–278 (1965)MathSciNetGoogle Scholar
- 15.Sekigawa, K.: On some \(3\)-dimensional curvature homogeneous spaces. Tensor (N.S.) 31(1), 87–97 (1977)MathSciNetzbMATHGoogle Scholar
- 16.Speranca, L., Weil, S.: Metric foliations on the Euclidean space (2018). arXiv:1806.09580v1
- 17.Tricerri, F., Vanhecke, L.: homogeneous Structures on Riemannian Manifolds. London Mathematical Society Lecture Note Series, vol. 83. Cambridge University Press, Cambridge (1983)CrossRefzbMATHGoogle Scholar
- 18.Walschap, G.: Geometric vector fields on Lie groups. Differ. Geom. Appl. 7, 219–230 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Nature B.V. 2019