Geometriae Dedicata

, Volume 200, Issue 1, pp 303–320 | Cite as

The one dimensional case of the singular minimal surfaces with density

  • Rafael LópezEmail author
Original Paper


Given \(\alpha ,\lambda \in \mathbb {R}\), a singular minimal surface with density vector \(\mathbf {v}\) is a surface \(\Sigma \) in Euclidean space whose mean curvature H satisfies \(2H(p)= \alpha \langle N(p),\mathbf {v}\rangle /\langle p,\mathbf {v}\rangle +2\lambda \), \(p\in \Sigma \), being N the Gauss map of \(\Sigma \). In this paper we classify the class of these surfaces that are invariant by a one-parameter group of translations.


Singular minimal surface Group of translations Manifold with density Phase plane 

Mathematics Subject Classification

53A10 53C44 53C21 53C42 



The author wishes to express his thanks to the referee for several helpful comments, specially concerning to the discussion of the portrait of phase plane.


  1. 1.
    Bemelmans, J., Dierkes, U.: On a singular variational integral with linea growth, I: existence and regularity of minimizers. Arch. Rat. Mech. Anal. 100, 83–103 (1987)CrossRefzbMATHGoogle Scholar
  2. 2.
    Böhme, R., Hildebrandt, S., Taush, E.: The two-dimensional analogue of the catenary. Pac. J. Math. 88, 247–278 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang, J.-E.: 1-Dimensional solutions of the \(\lambda \)-self shrinkers. Geom. Dedic. 189, 97–112 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dierkes, U.: A geometric maximum principle, Plateau’s problem for surfaces of prescribed mean curvature, and the two-dimensional analogue of the catenary. In: Partial Differential Equations and Calculus of Variations, Springer Lecture Notes in Mathematics, vol. 1357, pp. 116–141 (1988)Google Scholar
  5. 5.
    Dierkes, U.: A Bernstein result for energy minimizing hypersurfaces. Calc. Var. Partial Differ. Equ. 1(1), 37–54 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dierkes, U.: Singular minimal surfaces. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 177–193. Springer, Berlin (2003)CrossRefGoogle Scholar
  7. 7.
    Dierkes, U., Huisken, G.: The \(n\)-dimensional analogue of the catenary: existence and nonexistence. Pac. J. Math. 141, 47–54 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Halldorsson, H.P.: Self-similar solutions to the curve shortening flow. Trans. Am. Math. Soc. 364, 5285–5309 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Keiper, J.B.: The axially symmetric \(n\)-tectum. Preprint, Toledo University (1980)Google Scholar
  11. 11.
    López, R.: Invariant singular minimal surfaces. Ann. Glob. Anal. Geom. 53, 521–541 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    López, R.: Rotational singular minimal surfaces with density (in Preparation)Google Scholar
  13. 13.
    Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52, 853–858 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nitsche, J.C.C.: A non-existence theorem for the two-dimensional analogue of the catenary. Analysis 6, 143–156 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Otto, F.: Zugbeanspruchte Konstruiktionen. Bd. I. II. Berline, Frankfurt/M., Wien: Ullstein 1962 (1966)Google Scholar
  16. 16.
    Rosales, C., Cañete, A., Bayle, V., Morgan, F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differ. Equ. 31, 27–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Geometría y Topología Instituto de Matemáticas (IEMath-GR)Universidad de GranadaGranadaSpain

Personalised recommendations