Advertisement

Spherical geometry and the least symmetric triangle

  • Laney Bowden
  • Andrea Haynes
  • Clayton Shonkwiler
  • Aaron Shukert
Original Paper

Abstract

We study the problem of determining the least symmetric triangle, which arises both from pure geometry and from the study of molecular chirality in chemistry. Using the correspondence between planar n-gons and points in the Grassmannian of 2-planes in real n-space introduced by Hausmann and Knutson, this corresponds to finding the point in the fundamental domain of the hyperoctahedral group action on the Grassmannian which is furthest from the boundary, which we compute exactly. We also determine the least symmetric obtuse and acute triangles. These calculations provide prototypes for computations on polygon and shape spaces.

Keywords

Grassmannians Triangles Optimality Chirality Asymmetry 

Mathematics Subject Classification

53A04 52A10 52B15 

Notes

Acknowledgements

We would like to thank Vance Blankers, Jason Cantarella, Renzo Cavalieri, Andy Fry, Tom Needham, Eric Rawdon, and Gavin Stewart for stimulating conversations about the geometry of polygon space. We are especially grateful to Noah Otterstetter for his participation in our early conversations about this project and to the anonymous referee for their very helpful suggestions for improving this paper. This work was supported by a grant from the Simons Foundation (#354225, CS).

References

  1. 1.
    Bowden, L., Haynes, A., Shonkwiler, C., Shukert, A.: Spherical Geometry and the Most Scalene Triangle: Supplementary Materials. http://www.math.colostate.edu/~clayton/research/ScaleneTriangles (2017)
  2. 2.
    Buda, A.B., der Heyde, T.A., Mislow, K.: On quantifying chirality. Angew. Chem. Int. Ed. 31(8), 989–1007 (1992)CrossRefGoogle Scholar
  3. 3.
    Buda, A.B., Mislow, K.: On geometric measures of chirality. J. Mol. Struct. Theochem 232, 1–12 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cantarella, J., Deguchi, T., Shonkwiler, C.: Probability theory of random polygons from the quaternionic viewpoint. Commun. Pure Appl. Math. 67(10), 1658–1699 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cantarella, J., Needham, T., Shonkwiler, C., Stewart, G.: Random triangles and polygons in the plane. Preprint, arXiv:1702.01027 [math.MG] (2017)
  6. 6.
    Chauvin, R.: Entropy in dissimilarity and chirality measures. J. Math. Chem. 19(2), 147–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deguchi, T., Uehara, E.: Statistical and dynamical properties of topological polymers with graphs and ring polymers with knots. Polymers 9(7), 252 (2017)CrossRefGoogle Scholar
  8. 8.
    Hausmann, J.-C., Knutson, A.: Polygon spaces and Grassmannians. L’Enseign. Math. 43, 173–198 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hermann, R.: On the existence of a fundamental domain for Riemannian transformation groups. Proc. Am. Math. Soc. 13(3), 489–494 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Needham, T.: Kähler structures on spaces of framed curves. Ann. Glob. Anal. Geom.  https://doi.org/10.1007/s10455-018-9595-3 (2018)
  11. 11.
    O’Hara, J.: Renormalization of potentials and generalized centers. Adv. Appl. Math. 48(2), 365–392 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Portnoy, S.: A Lewis Carroll pillow problem: probability of an obtuse triangle. Stat. Sci. 9(2), 279–284 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Prelog, V.: Chirality in chemistry. Science 193(4247), 17–24 (1976)CrossRefGoogle Scholar
  14. 14.
    Rassat, A., Fowler, P.W.: Any scalene triangle is the most chiral triangle. Helv. Chim. Acta 86(5), 1728–1740 (2003)CrossRefGoogle Scholar
  15. 15.
    Robin, A.C.: The most scalene triangle. Math. Gazette 93(527), 331–338 (2009)Google Scholar
  16. 16.
    Suzuki, T., Yamamoto, T., Tezuka, Y.: Constructing a macromolecular \({\rm K}_{3,3}\) graph through electrostatic self-assembly and covalent fixation with a dendritic polymer precursor. J. Am. Chem. Soc. 136(28), 10148–10155 (2014)CrossRefGoogle Scholar
  17. 17.
    Uehara, E., Tanaka, R., Inoue, M., Hirose, F., Deguchi, T.: Mean-square radius of gyration and hydrodynamic radius for topological polymers evaluated through the quaternionic algorithm. React. Funct. Polym. 80, 48–56 (2014)CrossRefGoogle Scholar
  18. 18.
    Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 19(1), 25–57 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations