The Bridgeman–Kahn identity for hyperbolic manifolds with cusped boundary

Original Paper

Abstract

In this note, we extend the Bridgeman–Kahn identity to all finite-volume orientable hyperbolic n-manifolds with totally geodesic boundary. In the compact case, Bridgeman and Kahn are able to express the manifold’s volume as the sum of a function over only the orthospectrum. For manifolds with non-compact boundary, our extension adds terms corresponding to intrinsic invariants of boundary cusps.

Keywords

Hyperbolic manifold Geodesic boundary Orthospectrum Geometric identities 

Mathematics Subject Classification

57M50 30F40 32Q45 

References

  1. 1.
    Bridgeman, M.: Orthospectra of geodesic laminations and dilogarithm identities on moduli space. Geom. Topol. 15(2), 707–733 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bridgeman, M., Dumas, D.: Distribution of intersection lengths of a random geodesic with a geodesic lamination. Ergodic Theory Dyn. Syst. 27(4), 1055–1072 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bridgeman, M., Kahn, J.: Hyperbolic volume of manifolds with geodesic boundary and orthospectra. Geom. Funct. Anal. 20(5), 1210–1230 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Calegari, D.: Chimneys, leopard spots and the identities of Basmajian and Bridgeman. Algebraic Geom. Topol. 10(3), 1857–1863 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of \(3\)-manifolds. http://snappy.computop.org (31/07/2016) (2016)
  6. 6.
    Kojima, S.: Polyhedral decomposition of hyperbolic manifolds with boundary. In: Proceedings of Workshop in Pure Mathematics. Seoul National University, 10(part III), 37–57 (1990)Google Scholar
  7. 7.
    Masai, H., McShane, G.: Equidecomposability, volume formulae and orthospectra. Algebraic Geom. Topol. 13(6), 3135–3152 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    McMullen, C.T.: Riemann surfaces, dynamics and geometry (2014). http://www.math.harvard.edu/~ctm/home/text/class/harvard/275/rs/rs.pdf
  9. 9.
    Mumford, D., Series, C., Wright, D.: Indra’s Pearls: The vision of Felix Klein. Cambridge University Press, New York (2002). doi:10.1017/CBO9781107050051.024 CrossRefMATHGoogle Scholar
  10. 10.
    Nicholls, P.J.: The Ergodic Theory of Discrete Groups. Cambridge University Press, Cambridge (1989)CrossRefMATHGoogle Scholar
  11. 11.
    Oh, H.: Apollonian circle packings: dynamics and number theory. Jpn. J. Math. 9(1), 69–97 (2014). doi:10.1007/s11537-014-1384-6 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ratcliffe, J.: Foundations of Hyperbolic Manifolds. Springer Science & Business Media, Berlin (2013)MATHGoogle Scholar
  13. 13.
    Thurston, W.P.: Geometry and Topology of Three-Manifolds. Princeton Lecture Notes, 1979. Revised Version (1991)Google Scholar
  14. 14.
    Yarmola, A.: Convex hulls in hyperbolic 3-space and generalized orthospectral identities. Ph.D. thesis, Boston College (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Mathematics Research UnitMaison du NombreEsch-sur-AlzetteLuxembourg

Personalised recommendations