Geometriae Dedicata

, Volume 191, Issue 1, pp 137–151 | Cite as

A flow approach to the fractional Minkowski problem

  • Alina Stancu
  • Shardul Vikram
Original Paper


We study the asymptotic behaviour of a planar, anisotropic curvature flow and use it to provide a new proof for the existence of solutions to the smooth, planar \(L_p\)-Minkowski problem with \(0< p <1\).


Asymptotic behaviour Convex bodies Curvature flows Planar Minkowski problem 

Mathematics Subject Classification (2010)

Primary 53C44 52A05 Secondary 35K55 



The authors are thankful to the reviewers for their comments on the paper which improved the original manuscript.

Funding The first author’s research was supported by a Natural Sciences and Engineering Research Council of Canada award (Grant No. 327635-2012).


  1. 1.
    Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. JAMS 26, 831–852 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, W.: \(L_p\) Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Chou, K.-S., Zhu, X.-P.: The Curve Shortening Problem. Chapman and Hall/CRC, Boca Raton (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dou, J., Zhu, M.: The two dimensional \(L_p\)-Minkowski problem and nolinear equations with negative exponents. Adv. Math. 230, 1209–1221 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Gage, M.: Evolving plane curves by curvature in relative geometries. Duke Math. J. 72, 441–466 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Gage, M., Li, Y.: Evolving plane curves by curvature in relative geometries II. Duke Math. J. 75, 79–98 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gardner, R.J.: Geometric Tomography. Cambridge University Press, New York (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Guan, P., Ni, L.: Entropy and a convergence theorem for Gauss curvature flow in high dimension. JEMS.
  11. 11.
    Jiang, M.-Y.: Remarks on the \(2\)-dimensional \(L_p\)-Minkowski problem. Adv. Nonlinear Stud. 10, 297–313 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Lutwak, E.: The Brunn–Minkowski–Firey theory. I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lutwak, E.: The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Saroglou, C.: Remarks on the conjectured log-Brunn–Minkowski inequality. Geom. Dedic. 177, 353–365 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, New York (1993)CrossRefzbMATHGoogle Scholar
  16. 16.
    Stancu, A.: The discrete planar \({\text{ L }}_0\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Stancu, A.: On the number of solutions to the discrete two dimensional \({\text{ L }}_0\)-Minkowski problem. Adv. Math. 180, 290–323 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Stancu, A.: The necessary condition for the discrete \(L_0\)-problem in \(\mathbb{R}^2\). J. Geom. 88, 162–168 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Stancu, A.: The logarithmic Minkowski inequality for non-symmetric convex bodies. Adv. Appl. Math. 73, 43–58 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Tso, K.: Deforming a hypersurface by its Gauss-Kronecker curvature, I. Comm. Pure Appl. Math. 38, 867–882 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Umanskiy, V.: On the solvability of two-dimensional \(L_p\)-Minkowski problem. Adv. Math. 180, 176–186 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Zhu, X.-P.: Lectures on Mean Curvature Flows. AMS–International Press, Provindence, RI (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada

Personalised recommendations