Geometriae Dedicata

, Volume 182, Issue 1, pp 73–79 | Cite as

The Euler charateristic of the generalized Kummer scheme of an Abelian threefold

Original Paper

Abstract

Let X be an Abelian threefold. We prove a formula, conjectured by the first author, expressing the Euler characteristic of the generalized Kummer schemes \(K^nX\) of X in terms of the number of plane partitions. This computes the Donaldson–Thomas invariant of the moduli stack \([K^nX/X_n]\).

Keywords

Kummer schemes Donaldson–Thomas invariants Abelian varieties Integer partitions 

Mathematics Subject Classification

Primary: 14C05 Secondary: 14N35 

References

  1. 1.
    Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  2. 2.
    Cheah, J.: On the cohomology of Hilbert schemes of points. J. Algebraic Geom. 5(3), 479–511 (1996)MathSciNetMATHGoogle Scholar
  3. 3.
    Debarre, O.: On the Euler characteristic of generalized Kummer varieties. Am J Math 121(3), 577–586 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ellingsrud, G., Strømme, S.A.: On the homology of the Hilbert scheme of points in the plane. Invent. Math. 87, 343–352 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Mich. Math. J. 54(2), 353–359 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gulbrandsen, M.G.: Computing the Euler characteristic of generalized Kummer varieties. Ark. Mat. 45(1), 49–60 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gulbrandsen, M.G.: Donaldson–Thomas invariants for complexes on abelian threefolds. Math. Z.273(1–2), 219–236 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Shen, J.: The Euler characteristics of generalized Kummer schemes. arXiv:1502.03973
  9. 9.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Natural SciencesUniversity of StavangerStavangerNorway

Personalised recommendations