Advertisement

Geometriae Dedicata

, Volume 174, Issue 1, pp 375–400 | Cite as

A geometric approach to (semi)-groups defined by automata via dual transducers

  • Daniele D’Angeli
  • Emanuele Rodaro
Original Paper

Abstract

We give a geometric approach to groups defined by automata via the notion of enriched dual of an inverse transducer. Using this geometric correspondence we first provide some finiteness results, then we consider groups generated by the dual of Cayley type of machines. Lastly, we address the problem of the study of the action of these groups on the boundary. We show that examples of groups having essentially free actions without critical points lie in the class of groups defined by the transducers whose enriched duals generate torsion-free semigroup. Finally, we provide necessary and sufficient conditions to have finite Schreier graphs on the boundary yielding to the decidability of the algorithmic problem of the existence of Schreier graphs on the boundary whose cardinalities are bounded from above by some fixed integer.

Keywords

Automata groups Stallings construction Schreier graphs Dynamics on the boundary 

Mathematics Subject Classification

20E08 20M05 20M35 68R15 68R99 

Notes

Acknowledgments

The authors acknowledge the anonymous referee for his/her precious remarks that have certainly improved the quality of the paper.

References

  1. 1.
    Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness problem for automaton (semi) groups. Int. J. Algebra Comput. 22(6), 26 (2012)Google Scholar
  2. 2.
    Bartholdi, L., Silva, P.V.: Rational Subsets of Groups, vol. Handbook of Automata Theory, Chap. 23Google Scholar
  3. 3.
    Bondarenko, I., Ceccherini-Silberstein, T., Donno, A., Nekrashevych, V.: On a family of schreier graphs of intermediate growth associated with a self-similar group. Eur. J. Comb. 33(7), 1408–1421 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bondarenko, I., D’Angeli, D., Nagnibeda, T.: Ends of Schreier graphs of self-similar groups. In preparationGoogle Scholar
  5. 5.
    D’Angeli, D., Donno, A., Matter, M., Nagnibeda, T.: Schreier graphs of the Basilica group. J. Mod. Dyn. 2(24), 153–194 (2010)MathSciNetGoogle Scholar
  6. 6.
    D’Angeli, D., Rodaro, E.: Groups and semigroups defined by colorings of synchronizing automata. Int. J. Algebra Comput. pp. 1–21 (2014). doi: 10.1142/S0218196714500337
  7. 7.
    Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathematics, vol. A. Academic Press (1974)Google Scholar
  8. 8.
    Grigorchuk, R.I.: Some topics of dynamics of group actions on rooted trees. Proc. Steklov Inst. Math. 273, 1–118 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grigorchuk, R.I., Savchuk, D.: Self-similar groups acting essentially freely on the boundary of the binary rooted tree. To appear in Contemp. Math. 611, 9–48 (2014)Google Scholar
  10. 10.
    Howie, J.M.: Automata and Languages. Clarendon Press, Oxford (1991)MATHGoogle Scholar
  11. 11.
    Kambite, M., Silva, P.V., Steinberg, B.: The spectra of lamplighter groups and Cayley machines. Geom. Dedicata 120, 193–227 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kapovich, I., Myasnikov, A.: Stallings foldings and the subgroup structure of free groups. J. Algebra 248(2), 608–668 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Nekrashevych, V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence, RI (2005)Google Scholar
  14. 14.
    Savchuk, D., Vorobets, Y.: Automata generating free products of groups of order 2. J. Algebra 336(1), 53–66 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Serre, J.: Trees. Springer, Berlin (1980)CrossRefMATHGoogle Scholar
  16. 16.
    Silva, P.V.: Fixed points of endomorphisms of virtually free groups. Pac. J. Math. 263(1), 207–240 (2013)CrossRefMATHGoogle Scholar
  17. 17.
    Silva, P.V., Steinberg, B.: On a class of automata groups generalizing lamplighter groups. Int. J. Algebra Comput. 15(05n06), 1213–1234 (2005)Google Scholar
  18. 18.
    Steinberg, B., Vorobets, M., Vorobets, Y.: Automata over a binary alphabet generating free groups of even rank. Int. J. Algebra Comput. 21(12), 329–354 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Vershik, A.M.: Totally nonfree actions and the infinite symmetric group. Mosc. Math. J. 12(1), 193–212 (2012)MATHMathSciNetGoogle Scholar
  20. 20.
    Vorobets, M., Vorobets, Y.: On a free group of transformations defined by an automaton. Geom. Dedicata 124, 237–249 (2007)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Vorobets, M., Vorobets, Y.: On a series of finite automata defining free transformation groups. Groups Geom. Dyn. 4(2), 377–405 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Zelmanov, E.I.: Solution of the restricted burnside problem for groups of odd exponent. Izv. Akad. Nauk SSSR Ser. Mat. 54(1), 42–59 (1990)Google Scholar
  23. 23.
    Zelmanov, E.I.: Solution of the restricted burnside problem for 2-groups. Math. Sb. 182(4), 568–592 (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut für Mathematische Strukturtheorie (Math C)Technische Universität GrazGrazAustria
  2. 2.Centro de MatemáticaUniversity of PortoPortoPortugal

Personalised recommendations