Advertisement

Geometriae Dedicata

, Volume 174, Issue 1, pp 43–73 | Cite as

Lorentzian Coxeter systems and Boyd–Maxwell ball packings

  • Hao ChenEmail author
  • Jean-Philippe Labbé
Original Paper

Abstract

In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In this paper, we show that the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a geometric representation of a Coxeter group in a Lorentz space, the set of limit directions of weights equals the set of limit roots. Additionally, we use Coxeter complexes to describe tangency graphs of the corresponding Boyd–Maxwell ball packings. Finally, we enumerate the Coxeter systems that generate Boyd–Maxwell ball packings.

Keywords

Ball packing Infinite Coxeter groups Geometric representation Limit roots Limit sets Lorentz space 

Mathematics Subject Classification

52C17 20F55 05C30 

Notes

Acknowledgments

The authors are grateful to George Maxwell for his great availability to check the enumeration results. We thank Christian Stump for helpful discussions, and Christophe Hohlweg and Vivien Ripoll for valuable comments on a preliminary version of this article. We also thank the anonymous referee for careful reading and for pointing us to the work of Calabi and Markus.

References

  1. 1.
    Abramenko, P., Brown, K.S.: Buildings, GTM, vol. 248. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Bourbaki, N.: Groupes et Algèbres de Lie. Chapitre 4–6. Hermann, Paris (1968)Google Scholar
  3. 3.
    Boyd, D.W.: The residual set dimension of the Apollonian packing. Mathematika 20, 170–174 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boyd, D.W.: A new class of infinite sphere packings. Pac. J. Math. 50, 383–398 (1974)CrossRefzbMATHGoogle Scholar
  5. 5.
    Calabi, E., Markus, L.: Relativistic space forms. Ann. Math. 2(75), 63–76 (1962)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cecil, T.E.: Lie Sphere Geometry, Universitext, 2nd edn. Springer, New York (2008)Google Scholar
  7. 7.
    Chein, M.: Recherche des graphes des matrices de Coxeter hyperboliques d’ordre \(\le \,10\). Rev. Française Informat. Recherche Opérationnelle 3(Ser. R-3), 3–16 (1969)Google Scholar
  8. 8.
    Chen, H.: Ball packings and Lorentzian discrete geometry. Ph.D. Thesis, Freie Universität Berlin (2014)Google Scholar
  9. 9.
    Chen, H.: Sage code for enumeration of level-2 Coxeter graphs. Zenodo (2014). doi: 10.5281/zenodo.11115
  10. 10.
    Chen, H.: Apollonian ball packings and stacked polytopes (December 2013). Preprint, arXiv:1306.2515v2 [math.MG]
  11. 11.
    Chen, H., Labbé, J.P.: Limit directions for Lorentzian Coxeter systems (March 2014). Preprint, arXiv:1403.1502v1 [math.GR]
  12. 12.
    Dyer, M.: Imaginary cone and reflection subgroups of Coxeter groups (April 2013). Preprint, arXiv:1210.5206v2 [math.RT]
  13. 13.
    Dyer, M., Hohlweg, C., Ripoll, V.: Imaginary cones and limit roots of infinite Coxeter groups (April 2013). Preprint, arXiv:1303.6710v2 [math.GR]
  14. 14.
    Geck, M., Hiss, G., Lübeck, F., Malle, G., Pfeiffer, G.: CHEVIE: a system for computing and processing generic character tables. Appl. Algebra Eng. Commun. Comput. 7(3), 175–210 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: number theory. J. Number Theory 100(1), 1–45 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: geometry and group theory. I. The Apollonian group. Discret. Comput. Geom. 34(4), 547–585 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: geometry and group theory. III. Higher dimensions. Discret. Comput. Geom. 35(1), 37–72 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  19. 19.
    Higashitani, A., Mineyama, R., Nakashima, N.: Distribution of accumulation points of roots for type \((n-1,1)\) Coxeter groups (July 2014). Preprint, arXiv:1212.6617v5 [math.GR]
  20. 20.
    Hohlweg, C., Labbé, J.P., Ripoll, V.: Asymptotical behaviour of roots of infinite Coxeter groups. Can. J. Math. 66(2), 323–353 (2014)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hohlweg, C., Préaux, J.P., Ripoll, V.: On the limit set of root systems of Coxeter groups and Kleinian groups (July 2013). Preprint, arXiv:1305.0052v2 [math.GR]
  22. 22.
    Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Krammer, D.: The conjugacy problem for Coxeter groups. Group Geom. Dyn. 3(1), 71–171 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Maxwell, G.: Hyperbolic trees. J. Algebra 54(1), 46–49 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Maxwell, G.: Sphere packings and hyperbolic reflection groups. J. Algebra 79(1), 78–97 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Maxwell, G.: Wythoff’s construction for Coxeter groups. J. Algebra 123(2), 351–377 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Maxwell, G.: Euler characteristics and imbeddings of hyperbolic Coxeter groups. J. Austr. Math. Soc. Ser. A 64(2), 149–161 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    McMullen, C.T.: Hausdorff dimension and conformal dynamics. III. Computation of dimension. Am. J. Math. 120(4), 691–721 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Stein, W.A., et al.: Sage Mathematics Software (Version 6.2). The Sage Development Team (2014). http://www.sagemath.org
  30. 30.
    Stephenson, K.: Circle packing: a mathematical tale. Not. Am. Math. Soc. 50(11), 1376–1388 (2003)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Vinberg, E.B.: Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR. Ser. Mat. 35, 1072–1112 (1971)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations