Geometriae Dedicata

, Volume 171, Issue 1, pp 345–386 | Cite as

Lagrangian Rabinowitz Floer homology and twisted cotangent bundles

  • Will J. MerryEmail author
Original Paper


We study the following rigidity problem in symplectic geometry: can one displace a Lagrangian submanifold from a hypersurface? We relate this to the Arnold Chord Conjecture, and introduce a refined question about the existence of relative leaf-wise intersection points, which are the Lagrangian-theoretic analogue of the notion of leaf-wise intersection points defined by Moser (Acta. Math. 141(1–2):17–34, 1978). Our tool is Lagrangian Rabinowitz Floer homology, which we define first for Liouville domains and exact Lagrangian submanifolds with Legendrian boundary. We then extend this to the ‘virtually contact’ setting. By means of an Abbondandolo–Schwarz short exact sequence we compute the Lagrangian Rabinowitz Floer homology of certain regular level sets of Tonelli Hamiltonians of sufficiently high energy in twisted cotangent bundles, where the Lagrangians are conormal bundles. We deduce that in this situation a generic Hamiltonian diffeomorphism has infinitely many relative leaf-wise intersection points.


Rabinowitz Floer homology Leaf-wise intersections Mañé critical value 

Mathematics Subject Classification

53D40 57R58 37J45 37J50 



I would like to thank my Ph.D. adviser Gabriel P. Paternain for many helpful discussions. I am also extremely grateful to Alberto Abbondandolo, Peter Albers and Urs Frauenfelder, together with all the participants of the 2009–2010 Cambridge seminar on Rabinowitz Floer homology, for several stimulating remarks and insightful suggestions, and for pointing out errors in previous drafts of this work. This work forms part of my PhD thesis [38]. Finally, I am grateful to Irida Altman and the anonymous referees for their useful comments on making the paper more readable.


  1. 1.
    Abbas, C.: A note of V. I. Arnold’s chord conjecture. Int. Math. Res. Not. 4, 217–222 (1999)CrossRefGoogle Scholar
  2. 2.
    Albers, P., Frauenfelder, U.: Floer homology for negative line bundles and Reeb chords in prequantization spaces. J. Mod. Dyn. 33, 407–456 (2009)MathSciNetGoogle Scholar
  3. 3.
    Albers, P., Frauenfelder, U.: Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 21, 77–98 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Albers, P., Frauenfelder, U.: Infinitely many leaf-wise intersection points on cotangent bundles. In: Global Differential Geometry, Proceedings in Mathematics. Springer (2012)Google Scholar
  5. 5.
    Arnold, V.I., Givental, A.B.: Symplectic Geometry, Dynamical Systems, Encyclopedia of Mathematical Sciences, vol. 4. Springer, Berlin (1990)Google Scholar
  6. 6.
    Abbondandolo, A., Majer, P.: Lectures on the Morse complex for infinite dimensional manifolds. In: Biran, P., Cornea, O., Lalonde, F. (eds.) Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology, Nato Science Series II: Mathematics, Physics and Chemistry, vol. 217, pp. 1–74. Springer (2006)Google Scholar
  7. 7.
    Abbondandolo, A., Portaluri, A., Schwarz, M.: The homology of path spaces and Floer homology with conormal boundary conditions. J. Fixed Point Theory Appl. 4(2), 263–293 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Arnold, V.I.: First steps in symplectic topology. Russ. Math. Surv. 41, 1–21 (1986)CrossRefGoogle Scholar
  9. 9.
    Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59, 254–316 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Abbondandolo, A., Schwarz, M.: Estimates and computations in Rabinowitz–Floer homology. J. Topol. Anal. 1(4), 307–405 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Abbondandolo, A., Schwarz, M.: A smooth pseudo-gradient for the Lagrangian action functional. Adv. Nonlinear Stud. 9, 597–623 (2009)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Abbondandolo, A., Schwarz, M.: Floer homology of cotangent bundles and the loop product. Geom. Topol. 14, 1569–1722 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14, 627–718 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Bahri, A.: Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics, vol. 182. Longman, London (1989)Google Scholar
  15. 15.
    Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of Legendrian surgery. arXiv:0911.0026 (2009)Google Scholar
  16. 16.
    Bourgeois, F., Oancea, A.: Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces. Duke Math. J. 146(1), 71–174 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Bounya, C.: An exact triangle for the wrapped Floer homology of the Lagrangian Rabinowitz functional, In preparationGoogle Scholar
  18. 18.
    Bourgeois, F.: A Morse–Bott approach to contact homology. In: Eliashberg, Y., Khesin, B., Lalonde, F. (eds.) Symplectic and Contact Topology: Interactions and Perspectives, Fields Institute Communications, vol. 35. American Mathematical Society, USA (2003)Google Scholar
  19. 19.
    Burns, K., Paternain, G.P.: Anosov magnetic flows, critical values and topological entropy. Nonlinearity 15, 281–314 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pac. J. Math. 239(2), 216–251 (2009)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Cieliebak, K., Frauenfelder, U., Oancea, A.: Rabinowitz Floer homology and symplectic homology. Ann. Inst. Fourier 43(6), 957–1015 (2010)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values. Geom. Topol. 14, 1765–1870 (2010)Google Scholar
  23. 23.
    Cieliebak, K., Ginzburg, V., Kerman, E.: Symplectic homology and periodic orbits near symplectic submanifolds. Comment Math. Helv. 74, 554–581 (2004)MathSciNetGoogle Scholar
  24. 24.
    Contreras, G., Iturriaga, R.: Global Minimizers of Autonomous Lagrangians, Colloqio Brasileiro de Matematica, vol. 22. IMPA, Rio de Janeiro (1999)Google Scholar
  25. 25.
    Cieliebak, K.: Handle attaching in symplectic homology and the chord conjecture. J. Eur. Math. Soc. 4(2), 115–142 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: The Palais–Smale condition and Mañé’s critical values. Ann. Henri Poincaré 1(4), 655–684 (2000)Google Scholar
  27. 27.
    Contreras, G.: The Palais–Smale condition on contact type energy levels for convex Lagrangian systems. Calc. Var. Partial Differ. Eqs. 27(3), 321–395 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Duistermaat, J.J.: On the Morse index in variational calculus. Adv. Math. 21, 173–195 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Frauenfelder, U.: The Arnold–Givental conjecture and moment Floer homology. Int. Math. Res. Not. 42, 2179–2269 (2004)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Ginzburg, V.: On closed trajectories of a charge in a magnetic field. In: Thomas, C.B. (ed.) An Application of Symplectic Geometry, Contact and Symplectic Geometry (Cambridge, 1994), Publications of the Newton Institute, vol. 8, pp. 131–148. Cambridge University Press, Cambridge (1996)Google Scholar
  31. 31.
    Givental, A.: Nonlinear generalization of the Maslov index. Adv. Sov. Math. 1, 71–103 (1990)MathSciNetGoogle Scholar
  32. 32.
    Givental, A.: The nonlinear Maslov index, Geometry of Low-Dimensional manifolds. In: Donaldson, S. (ed.) LMS Lecture Note Series, vol. 151, pp. 35–43. Cambridge University Press, Cambridge (1990)Google Scholar
  33. 33.
    Hutchings, M., Taubes, C.: Proof of the Arnold chord conjecture in three dimensions I. Math. Res. Lett. 18(2), 295–313 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Hutchings, M., Taubes, C.: Proof of the rnold chord conjecture in three dimensions II. arXiv:1111.3324 (2011)Google Scholar
  35. 35.
    Hofer, H., Wysocki, K., Zehnder, E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. 148(1), 197–289 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Mañé, R.: Lagrangian Flows: The Dynamics of Globally Minimizing Orbits, Pitman Research Notes in Math., vol. 362, pp. 120–131. Longman, London (1996)Google Scholar
  37. 37.
    Merry, W.J.: On the Rabinowitz Floer homology of twisted cotangent bundles. Calc. Var. Partial Differ. Eqs. 42(3–4), 355–404 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Merry, W. J.: Rabinowitz Floer homology and Mañé supercritical hypersurfaces, Ph.D. thesis. University of Cambridge. Available online at (2011)
  39. 39.
    Macarini, L., Merry, W.J., Paternain, G.P.: On the growth rate of leaf-wise intersections. J. Symplectic Geom. 10, 601–653 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Mohnke, K.: Holomorphic disks and the Chord conjecture. Ann. Math. 154, 219–222 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Moser, J.: A fixed point theorem in symplectic geometry. Acta. Math. 141(1–2), 17–34 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Merry, W.J., Paternain, G.P.: Index computations in Rabinowitz Floer homology. J. Fixed Point Theory Appl. 10(1), 88–111 (2011)CrossRefMathSciNetGoogle Scholar
  43. 43.
    McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, vol. 52. Colloquim Publications, American Mathematical Society, Providence (2012)zbMATHGoogle Scholar
  44. 44.
    Paternain, G.P.: Magnetic rigidity of horocycle flows. Pac. J. Math. 225, 301–323 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Pozniak, M.: Floer homology, Novikov rings and clean intersections. In: Eliashberg, Y., Fuchs, D., Ratiu, T., Weinstein, A. (eds.) Northern California Symplectic Geometry Seminar, vol. 196, 2nd edn, pp. 119–181. American Mathematical Society, Providence (1999)Google Scholar
  46. 46.
    Ritter, A.F.: Topological quantum field theory structure on symplectic cohomology. J. Topol. 6(2), 391–489 (2013)Google Scholar
  47. 47.
    Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Salamon, D.: Lectures on Floer homology. In: Eliashberg, Y., Traynor, L. (eds.) Symplectic Geometry and Topology, IAS/Park City Math Series, vol. 7, pp. 143–225. American Mathematical Society, Providence (1999)Google Scholar
  49. 49.
    Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193(2), 419–461 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsETH ZürichSwitzerland

Personalised recommendations