Geometriae Dedicata

, Volume 170, Issue 1, pp 143–155 | Cite as

Harmonic tori in De Sitter spaces \(S^{2n}_1\)

Original Paper


We show that all superconformal harmonic immersions from genus one surfaces into de Sitter spaces \(S^{2n}_{1}\) with globally defined harmonic sequence are of finite-type and hence result merely from solving a pair of ordinary differential equations. As an application, we prove that all Willmore tori in \(S^{3}\) without umbilic points can be constructed in this simple way.


Harmonic maps of surfaces Willmore surfaces Harmonic maps and integrable systems Toda equations 

Mathematics Subject Classification



  1. 1.
    Antoine, J.-P., Piette, B.: Solutions of Euclidean \(\sigma \)-models on noncompact Grassmann manifolds. J. Math. Phys. 29(7), 1687–1697 (1988)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bobenko, A.I.: All constant mean curvature tori in \({\mathbb{R}}^3,\,{S}^{3}\) and \(H^{3}\) in terms of theta-functions. Math. Ann. 290(2), 209–245 (1991)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bohle, C.: Constrained Willmore tori in the 4-Sphere. arXiv:0803.0633v1Google Scholar
  4. 4.
    Bolton, J., Pedit, F., Woodward, L.M.: Minimal surfaces and the affine Toda field model. J. Reine. Angew. Math. 459, 119–150 (1995)MATHMathSciNetGoogle Scholar
  5. 5.
    Bryant, R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Differ. Geom. 17(3), 455–473 (1982)MATHGoogle Scholar
  6. 6.
    Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53 (1984)MATHGoogle Scholar
  7. 7.
    Bryant, R.L.: Lie groups and twistor spaces. Duke Math. J. 52(1), 223–261 (1985)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Burstall, F., Ferus, D., Pedit, F., Pinkall, U.: Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. Math. 138, 173–212 (1993)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Burstall, F.E.: Harmonic tori in spheres and complex projective spaces. J. Reine Angew. Math. 469, 149–177 (1995)MATHMathSciNetGoogle Scholar
  10. 10.
    Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)MATHMathSciNetGoogle Scholar
  11. 11.
    Carberry, E., Leschke, K., Pedit, F.: Darboux transforms and spectral curves of constant mean curvature surfaces revisited. Ann. Glob. Anal. Geom. 43(4), 299–329 (2013)Google Scholar
  12. 12.
    Carberry, E., McIntosh, I.: Special Lagrangian \(T^{2}\)-cones in \({\mathbb{C}}^{3}\) exist for all spectral genera. J. Lond. Math. Soc. 69(2), 531–544 (2004)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Carberry, E., Schmidt, M.U.: The closure of spectral data for constant mean curvature tori in \(S^{3}\). Preprint (2012)Google Scholar
  14. 14.
    Carberry, E., Turner, K.: Toda Frames, Harmonic Maps and Extended Dynkin Diagrams. arXiv: math.DG/1111.4028 (2011)Google Scholar
  15. 15.
    Carberry, E.: Minimal tori in \(S^{3}\). Pac. J. Math. 233(1), 41–69 (2007)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Efetov, K.: Supersymmetry and theory of disordered metals. Adv. Phys. 32(1), 53–127 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ejiri, N.: Isotropic harmonic maps of Riemann surfaces into the de Sitter space time. Quart. J. Math. Oxford Ser. (2) 39(155), 291–306 (1988)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ercolani, N.M., Knörrer, H., Trubowitz E.: Hyperelliptic curves that generate constant mean curvature tori in \({\mathbb{R}}^{3}\). In: Integrable Systems (Luminy 1991), volume 115 of, Progr. Math., pp. 81–114 (1993)Google Scholar
  19. 19.
    Ferus, D., Pedit, F., Pinkall, U., Sterling, I.: Minimal tori in \(S^{4}\). J. Reine. Angew. Math. 429, 1–47 (1992)MATHMathSciNetGoogle Scholar
  20. 20.
    Haskins, M.: The geometric complexity of special Lagrangian \(T^2\)-cones. Invent. Math. 157(1), 11–70 (2004)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hitchin, N.: Harmonic maps from a 2-torus to the 3-sphere. J. Differ. Geom. 31, 627–710 (1990)MATHMathSciNetGoogle Scholar
  22. 22.
    Hulett, E.: Superconformal harmonic surfaces in de Sitter space-times. J. Geom. Phys. 55(2), 179–206 (2005)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Jaggy, C.: On the classification of constant mean curvature tori in \(R^{3}\). Comment. Math. Helv. 69(4), 640–658 (1994)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Kilian, M., Schmidt, M.U., Schmitt N.: Flows of Constant Mean Curvature tori in the 3-Sphere: The Equivariant Case. arXiv:1011.2875v1 (2010)Google Scholar
  25. 25.
    McIntosh, I.: A construction of all non-isotropic harmonic tori in complex projective space. Int. J. Math. 6(6), 831–879 (1995)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    McIntosh, I.: Two remarks on the construction of harmonic tori in \({\mathbb{CP}}^{n}\). Int. J. Math. 7(4), 515–520 (1996)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    McIntosh, I.: Special Lagrangian Cones in \({\mathbb{C}}^{3}\) and Primitive Harmonic Maps. math.DG/0201157 (2002)Google Scholar
  28. 28.
    McIntosh, I., Romon, P.: The spectral data for Hamiltonian stationary Lagrangian tori in \({\mathbb{R}}^{4}\). Differ. Geom. Appl. 29, 125–146 (2011)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Oppermann, R.: Nonlinear sigma model for localization in superconductors. Nuclear Phys. 280(4), 753–769 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pinkall, U., Sterling, I.: On the classification of constant mean curvature tori. Ann. Math. 130(2), 407–451 (1989)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Schmidt, M.: A Proof of the Willmore Conjecture. math.DG/0203224 (2002)Google Scholar
  32. 32.
    Willmore, T.J.: Note on embedded surfaces. An.Sti.Univ. ‘Al. I. Cuza’ Iasi Sect.I a Mat. (N.S.) 11B, 493–496 (1965)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  2. 2.Department of MathematicsChicagoUSA

Personalised recommendations