Geometriae Dedicata

, Volume 168, Issue 1, pp 265–289 | Cite as

Discretization of asymptotic line parametrizations using hyperboloid surface patches

  • Emanuel Huhnen-Venedey
  • Thilo Rörig
Original Paper


Two-dimensional affine A-nets in \(3\)-space are quadrilateral meshes that discretize surfaces parametrized along asymptotic lines. The defining property of A-nets is planarity of vertex stars, hence elementary quadrilaterals of a generic A-net are skew. The present article deals with the extension of A-nets to differentiable surfaces, by gluing hyperboloid surface patches into the skew quadrilaterals. The obtained surfaces, named “hyperbolic nets”, are a novel, piecewise smooth discretization of surfaces parametrized along asymptotic lines. A simply connected affine A-net can be extended to a hyperbolic net if all quadrilateral strips are “equi-twisted”. The geometric condition of equi-twist implies the combinatorial property, that all inner vertices of the A-net have to be of even degree. If an A-net can be extended to a hyperbolic net, then there exists a 1-parameter family of such extensions. It is briefly explained how the generation of hyperbolic nets can be implemented on a computer. We use a projective model of Plücker line geometry in order to describe A-nets and hyperboloids.


Discrete differential geometry Discrete asymptotic line parametrization A-nets Hyperboloids Projective geometry Plücker line geometry 

Mathematics Subject Classification (2000)

51M30 53A05 65D17 



We would like to thank Alexander Bobenko and Wolfgang Schief for fruitful discussions on the subject and comments on previous versions of the manuscript. We further want to thank Charles Gunn for providing us with the pictures for Fig. 11.


  1. 1.
    Audin, M.: Geometry. Springer, Berlin (2003)CrossRefGoogle Scholar
  2. 2.
    Bobenko, A.I., Huhnen-Venedey, E.: Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides. Geometriae Dedicata 159(1), 207–237 (2012)Google Scholar
  3. 3.
    Bobenko, A.I.: Discrete conformal maps and surfaces, symmetries and integrability of difference equations. In: Clarkson, P.A., Nijhoff, F.W. (eds.) London Mathematical Society Lecture Notes, vol. 255 (Canterbury 1996). Cambridge University Press, pp. 97–108 (1999)Google Scholar
  4. 4.
    Bobenko, A.I., Pinkall, U.: Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Differ. Geom. 43(3), 527–611 (1996)Google Scholar
  5. 5.
    Bo, P., Pottmann, H., Kilian, M., Wang, W., Wallner, J.: Circular arc structures. ACM Trans. Graph. 30(4), 1–11 # 101 (Proc. SIGGRAPH.) (2011)Google Scholar
  6. 6.
    Bobenko, A.I., Schief, W.K.: Discrete indefinite affine spheres. In: Bobenko, A.I., et al. (ed.) Discrete Integrable Geometry and Physics. Based on the Conference on Condensed Matter Physics and Discrete Geometry, Vienna, Austria, February 1996. Clarendon Press, Oxford. Oxford Lecturer Series in Mathematics and Applications, vol. 16, pp. 113–138 (1999)Google Scholar
  7. 7.
    Bobenko, A.I., Suris, Y.B.: On organizing principles of discrete differential geometry. Geometry of spheres. Russ. Math. Surv. 62(1), 1–43 (2007) (English. Russian original)Google Scholar
  8. 8.
    Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Integrable Structure. Graduate Studies 739 in Mathematics, vol. 98, AMS, Providence, RI (2008)Google Scholar
  9. 9.
    Craizer, M., Anciaux, H., Lewiner, T.: Discrete affine minimal surfaces with indefinite metric. Differ. Geom. Appl. 28(2), 158–169 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cieslinski, J., Doliwa, A., Santini, P.M.: The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235, 480–488 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Doliwa, A., Nieszporski, M., Santini, P.M.: Asymptotic lattices and their integrable reductions. I: the Bianchi–Ernst and the Fubini–Ragazzi lattices. J. Phys. A Math. Gen. 34(48), 10423–10439 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Doliwa, A.: Discrete asymptotic nets and \(W\)-congruences in Plücker line geometry. J. Geom. Phys. 39(1), 9–29 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43(6), 2079–2086 (1977)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hoffmann, T.: Discrete Amsler surfaces and a discrete Painlevé III equation. In: Bobenko, A., Seiler, R. (eds.) Discrete Integrable Geometry and Physics. Oxford University Press, Oxford, pp. 83–96 (1999)Google Scholar
  15. 15.
    jReality Group, jReality: a Java 3D Viewer for mathematics, Java class library.
  16. 16.
    Klein, F.: Vorlesungen über höhere Geometrie. 3. Aufl., bearbeitet und herausgegeben von W. Blaschke., VIII + 405 S. Berlin, J. Springer (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Bd. 22) (1926)Google Scholar
  17. 17.
    Konopelchenko, B.G., Pinkall, U.: Projective generalizations of Lelieuvre’s formula. Geom. Dedicata 79(1), 81–99 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Käferböck, F., Pottmann, H.: Smooth surfaces from bilinear patches: discrete affine minimal surfaces. Preprint (2012)Google Scholar
  19. 19.
    Konopelchenko, B.G., Schief, W.K.: Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality. R. Soc. Lond. Proc. Ser. A 454, 3075–3104 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kenyon, R., Schlenker, J.-M.: Rhombic embeddings of planar quad-graphs., Trans. Am. Math. Soc. 357(9), 3443–3458 (2005)Google Scholar
  21. 21.
    Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., Wang, W.: Geometric modeling with conical meshes and developable surfaces, ACM Trans. Graph. 25(3), 681–689 (Proc. SIGGRAPH) (2006)Google Scholar
  22. 22.
    Nieszporski, M.: On a discretization of asymptotic nets., J. Geom. Phys. 40(3–4), 259–276 (2002)Google Scholar
  23. 23.
    Nimmo, J.J.C., Schief, W.K.: Superposition principles associated with the Moutard transformation: an integrable discretization of a \((2+1)\)-dimensional sine-Gordon system. Proc. R. Soc. Lond. Ser. A 453(1957), 255–279 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., Wallner, J.: Freeform surfaces from single curved panels. ACM Trans. Graph. 27(3) (Proc. SIGGRAPH) (2008)Google Scholar
  25. 25.
    Pottmann, H., Wallner, J.: Computational Line Geometry, Mathematics and Visualization. Springer, Berlin (2001)Google Scholar
  26. 26.
    Pottmann, H., Wallner, J.: The focal geometry of circular and conical meshes. Adv. Comput. Math. 29(3), 249–268 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Sauer, R.: Projektive Liniengeometrie., 194 S. Berlin, W. de Gruyter & Co. (Göschens Lehrbücherei I. Gruppe, Bd. 23) (1937)Google Scholar
  28. 28.
    Sauer, R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen., Math. Z. 52 (1950), 611–622 (German)Google Scholar
  29. 29.
    Shi, L., Wang, J., Pottmann, H.: Smooth surfaces from rational bilinear patches. Preprint (2013)Google Scholar
  30. 30.
    Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa. 160, 39–77 (1951)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations