Geometriae Dedicata

, Volume 166, Issue 1, pp 15–29 | Cite as

There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems

  • Ivan Izmestiev
  • Robert B. Kusner
  • Günter Rote
  • Boris Springborn
  • John M. Sullivan
Original Paper

Abstract

There is no 5,7-triangulation of the torus, that is, no triangulation with exactly two exceptional vertices, of degree 5 and 7. Similarly, there is no 3,5-quadrangulation. The vertices of a 2,4-hexangulation of the torus cannot be bicolored. Similar statements hold for 4,8-triangulations and 2,6-quadrangulations. We prove these results, of which the first two are known and the others seem to be new, as corollaries of a theorem on the holonomy group of a euclidean cone metric on the torus with just two cone points. We provide two proofs of this theorem: One argument is metric in nature, the other relies on the induced conformal structure and proceeds by invoking the residue theorem. Similar methods can be used to prove a theorem of Dress on infinite triangulations of the plane with exactly two irregular vertices. The non-existence results for torus decompositions provide infinite families of graphs which cannot be embedded in the torus.

Keywords

Torus triangulation Euclidean cone metric Holonomy Meromorphic differential Residue theorem Burgers vector 

Mathematics Subject Classification (2000)

05C10 30F10 57M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors L.V.: Complex Analysis. 3rd edn. McGraw-Hill Book Co., New York (1978)Google Scholar
  2. 2.
    Altshuler A.: Construction and enumeration of regular maps on the torus. Discret. Math. 4, 201–217 (1973)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barnette D., Jucovič E., Trenkler M.: Toroidal maps with prescribed types of vertices and faces. Mathematika 18, 82–90 (1971)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brehm U., Kühnel W.: Equivelar maps on the torus. Eur. J. Combin. 29(8), 1843–1861 (2008). doi: 10.1016/j.ejc.2008.01.010 CrossRefMATHGoogle Scholar
  5. 5.
    Datta B., Upadhyay A.K.: Degree-regular triangulations of torus and Klein bottle. Proc. Indian Acad. Sci. Math. Sci 115(3), 279–307 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bobenko, A.I., Kenyon, R.W., Sullivan, J.M., Ziegler, G.M. (eds.): Discrete differential geometry. Oberwolfach Rep. 3(1), 653–728 (2006)Google Scholar
  7. 7.
    Dress, A.W.M.: On the classification of local disorder in globally regular spatial patterns. In: Temporal order, Springer Ser. Synergetics, vol. 29, pp. 61–66. Springer, Berlin (1985)Google Scholar
  8. 8.
    Eberhard V.: Zur Morphologie der Polyeder. Teubner, Leipzig (1891)Google Scholar
  9. 9.
    Gagarin A., Myrvold W., Chambers J.: The obstructions for toroidal graphs with no K 3,3’s. Discret. Math. 309(11), 3625–3631 (2009). doi: 10.1016/j.disc.2007.12.075 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grünbaum B.: Some analogues of Eberhard’s theorem on convex polytopes. Israel J. Math. 6, 398–411 (1968)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grünbaum B.: Planar maps with prescribed types of vertices and faces. Mathematika 16, 28–36 (1969)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grünbaum, B.: Convex polytopes, Graduate Texts in Mathematics, vol. 221. Springer, New York. 2nd edn. prepared by Kaibel, Klee and Ziegler (2003)Google Scholar
  13. 13.
    Grünbaum B., Szilassi L.: Geometric realizations of special toroidal complexes. Contrib. Discret. Math. 4(1), 21–39 (2009)MATHGoogle Scholar
  14. 14.
    Jendrol’ S., Jucovič E.: On the toroidal analogue of Eberhard’s theorem. Proc. Lond. Math. Soc. (3) 25, 385–398 (1972)CrossRefGoogle Scholar
  15. 15.
    Jucovič E., Trenkler M.: A theorem on the structure of cell-decompositions of orientable 2-manifolds. Mathematika 20, 63–82 (1973)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Negami S.: Uniqueness and faithfulness of embedding of toroidal graphs. Discret. Math. 44(2), 161–180 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Thomassen C.: Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Am. Math. Soc 323(2), 605–635 (1991)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: The Epstein Birthday Schrift, Geom. Topol. Monogr., vol. 1, pp. 511–549. Geom. Topol. Publ., Coventry (1998)Google Scholar
  19. 19.
    Zaks J.: The analogue of Eberhard’s theorem for 4-valent graphs on the torus. Israel J. Math. 9, 299–305 (1971)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ivan Izmestiev
    • 1
  • Robert B. Kusner
    • 2
  • Günter Rote
    • 3
  • Boris Springborn
    • 4
  • John M. Sullivan
    • 5
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.University of MassachusettsAmherstUSA
  3. 3.Freie Universität BerlinBerlinGermany
  4. 4.Technische Universität MünchenGarchingGermany
  5. 5.Technische Universität BerlinBerlinGermany

Personalised recommendations