Geometriae Dedicata

, Volume 163, Issue 1, pp 311–338 | Cite as

On the non-uniform hyperbolicity of the Kontsevich–Zorich cocycle for quadratic differentials

  • Rodrigo Treviño
Original Paper


We prove the non-uniform hyperbolicity of the Kontsevich–Zorich cocycle for a measure supported on abelian differentials which come from non-orientable quadratic differentials through a standard orienting, double cover construction. The proof uses Forni’s criterion (J. Mod. Dyn. 5(2):355–395, 2011) for non-uniform hyperbolicity of the cocycle for \({SL(2, \mathbb{R})}\)-invariant measures. We apply these results to the study of deviations in homology of typical leaves of the vertical and horizontal (non-orientable) foliations and deviations of ergodic averages.


Quadratic differentials Kontsevich–Zorich cocycle Non-orientable foliations 

Mathematics Subject Classification

32G15 37D25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila, A., Resende, J.M.: Exponential mixing for the Teichmuller flow in the space of quadratic differentials, comment. Math. Helv. (to appear)Google Scholar
  2. 2.
    Avila A., Viana M.: Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture. Acta Math. 198(1), 1–56 (2007) [MRMR2316268 (2008m:37010)]MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bainbridge M.: Euler characteristics of Teichmüller curves in genus two. Geom. Topol. 11, 1887–2073 (2007) [MR2350471 (2009c:32025)]MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boissy C., Lanneau E.: Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials. Ergodic Theory Dyn. Syst. 29(3), 767–816 (2009) [MRMR2505317 (2010g:37050)]MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bufetov, A.I.: Limit theorems for translation flows, ArXiv e-prints (2008)Google Scholar
  6. 6.
    Delecroix, V., Hubert, P., Lelièvre, S.: Diffusion for the periodic wind-tree model, ArXiv e-prints (2011)Google Scholar
  7. 7.
    Eckmann J.P., Ruelle D.: Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57(3, part 1), 617–656 (1985) [MR800052 (87d:58083a)]MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fickenscher, J.: Self-inverses in rauzy classes, ArXiv e-prints (2011)Google Scholar
  9. 9.
    Forni G., Matheus C., Zorich A.: Square-tiled cyclic covers. J. Mod. Dyn. 5(2), 285–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Forni G.: Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. (2) 155(1), 1–103 (2002) [MR MR1888794 (2003g:37009)]MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Forni, G.: Sobolev regularity of solutions of the cohomological equation, ArXiv e-prints (2007)Google Scholar
  12. 12.
    Forni G.: A geometric criterion for the nonuniform hyperbolicity of the Kontsevich-Zorich cocycle. J. Mod. Dyn. 5(2), 355–395 (2011) [with an appendix by Carlos Matheus. MR2820565]MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems, Encyclopedia of mathematics and its applications, vol. 54, Cambridge University Press, Cambridge (1995) (with a supplementary chapter by Katok and Leonardo Mendoza) [MRMR1326374 (96c:58055)]Google Scholar
  14. 14.
    Kontsevich M.: Lyapunov exponents and Hodge theory, the mathematical beauty of physics (Saclay, 1996). Adv. Ser. Math. Phys. 24, 318–332 (1997) [MRMR1490861 (99b:58147)]MathSciNetGoogle Scholar
  15. 15.
    Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153(3), 631–678 (2003) [MRMR2000471 (2005b:32030)]MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lanneau, E.: Parity of the Spin structure defined by a quadratic differential. Geom. Topol. 8, 511–538 (2004) (electronic) [MRMR2057772 (2005h:53149)]Google Scholar
  17. 17.
    Lanneau E.: Connected components of the strata of the moduli spaces of quadratic differentials. Ann. Sci. Éc. Norm. Supér. (4) 41(1), 1–56 (2008) [MRMR2423309 (2009e:30094)]MathSciNetzbMATHGoogle Scholar
  18. 18.
    Masur H.: Interval exchange transformations and measured foliations. Ann. Math. (2) 115(1), 169–200 (1982) [MRMR644018 (83e:28012)]MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Masur H., Smillie J.: Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, comment. Math. Helv. 68(2), 289–307 (1993) [MRMR1214233 (94d:32028)]MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schwartzman S.: Asymptotic cycles. Ann. Math. (2) 66, 270–284 (1957) [MRMR0088720 (19,568i)]MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Veech W.A.: The Teichmüller geodesic flow. Ann. Math. (2) 124(3), 441–530 (1986) [MR866707 (88g:58153)]MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zorich A.: How do the leaves of a closed 1-form wind around a surface? Pseudoperiodic topology. Am. Math. Soc. Trans. Ser. 2 197, 135–178 (1999) [MRMR1733872 (2001c:57019)]MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsThe University of MarylandCollege ParkUSA

Personalised recommendations