Geometriae Dedicata

, Volume 163, Issue 1, pp 215–274 | Cite as

Universal hyperbolic geometry I: trigonometry

  • N. J. Wildberger
Original Paper


Hyperbolic geometry is developed in a purely algebraic fashion from first principles, without a prior development of differential geometry. The natural connection with the geometry of Lorentz, Einstein and Minkowski comes from a projective point of view, with trigonometric laws that extend to ‘points at infinity’, here called ‘null points’, and beyond to ‘ideal points’ associated to a hyperboloid of one sheet. The theory works over a general field not of characteristic two, and the main laws can be viewed as deformations of those from planar rational trigonometry. There are many new features; this paper gives 92 foundational theorems.


Hyperbolic geometry Projective geometry Rational trigonometry Relativistic geometry Null points 

Mathematics Subject Classification (2000)

14N99 53A35 51F99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artzy R.: Linear Geometry. Addison-Wesley, Reading, MA (1974)Google Scholar
  2. 2.
    Angel J.: Finite upper half planes over finite fields. Finite Fields Appl. 2, 62–86 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beardon A.F.: The Geometry of Discrete Groups, GTM 91. Springer, New York (1983)CrossRefGoogle Scholar
  4. 4.
    Behnke, H., Bachmann, F., Fladt, K., Kunle, H. (eds): Fundamentals of Mathematics vol. 2 Geometry. MIT Press, Cambridge (1974)Google Scholar
  5. 5.
    Coxeter H.S.M.: Introduction to Geometry. Wiley, New York (1961)zbMATHGoogle Scholar
  6. 6.
    Fenchel W.: Elementary Geometry in Hyperbolic Space, Studies in Mathematics 11. Walter de Gruyter, Berlin (1989)CrossRefGoogle Scholar
  7. 7.
    Goh, S.: Chebyshev polynomials and spread polynomials, Honours Thesis. School of Mathematics, UNSW (2005)Google Scholar
  8. 8.
    Goh, S., Wildberger, N.J.: Spread polynomials, rotations and the butterfly effect. arXiv:0911.1025vl (2009)Google Scholar
  9. 9.
    Greenberg M.J.: Euclidean and Non-Euclidean Geometries: Development and History. W. H. Freeman, San Francisco (1972)Google Scholar
  10. 10.
    Gunn, C.: Geometry, Kinematics and Rigid Body Mechanics in Cayley–Klein Geometries. PhD thesis, Berlin (2011)Google Scholar
  11. 11.
    Hestenes D., Li H., Rockwood A.: A unified algebraic approach for classical geometries. In: Sommer, G. (eds) Geometric Computing with Clifford Algebra, pp. 3–27. Springer, Berlin (2001)Google Scholar
  12. 12.
    Katok S.: Fuchsian Groups, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)Google Scholar
  13. 13.
    Klein, F.: Vorlesungen über nicht-euklidische Geometrie. Springer, Berlin, reprinted 1968 (orig. 1928)Google Scholar
  14. 14.
    Klingenberg W.: Eine Begründung der hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ramsay A., Richtmyer R.D.: Introduction to Hyperbolic Geometry. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Richter-Gebert J.: Perspectives on Projective Geometry: A Guided Tour through Real and Complex Geometry. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Szmielew, W.: Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry. In: Studies in Logic and the Foundations of Mathematics, vol. 27, pp. 30–52 (1959)Google Scholar
  18. 18.
    Soto-Andrade, J.: Geometrical Gel’fand models, tensor quotients, and Weil representations. In: Proc. Symp. Pure Math. vol. 47, Am. Math. Soc., Providence, pp. 305–316 (1987)Google Scholar
  19. 19.
    Sommerville D.M.Y.: The Elements of Non-Euclidean Geometry. G. Bell and Sons, London (1914)zbMATHGoogle Scholar
  20. 20.
    Terras A.: Fourier Analysis on Finite Groups and Applications, London Math. Soc. Student Texts 43. Cambridge University Press, Cambridge (1999)Google Scholar
  21. 21.
    Thurston W.P.: Threedimensional geometry and topology. In: Levy, S. (eds) Princeton mathematical series 35, vol. 1., Princeton University Press, Princeton NJ (1997)Google Scholar
  22. 22.
    Ungar, A.A.: Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry. In: Computers and Mathematics with Applications vol. 40, Issues 2–3, July–August 2000, pp. 313–332Google Scholar
  23. 23.
    Wildberger N.J.: Divine Proportions: Rational Trigonometry to Universal Geometry. Wild Egg Books, Sydney (2005)zbMATHGoogle Scholar
  24. 24.
    Wildberger N.J.: One dimensional metrical geometry. Geometriae Dedicata 128(1), 145–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wildberger N.J.: Chromogeometry and Relativistic Conics. KoG 13, 43–50 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wildberger, N.J.: Universal affine and projective geometry. J. Geom (to appear)Google Scholar
  27. 27.
    Wildberger N.J.: A Rational Approach to Trigonometry. Math Horizons, 16–20 (Nov. 2007)Google Scholar
  28. 28.
    Wildberger N.J.: Universal hyperbolic geometry II: a pictorial overview. KoG 14, 3–24 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wildberger N.J.: Universal hyperbolic geometry III: first steps in projective triangle geometry. KoG 15, 25–49 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wildberger N.J.: Chromogeometry. Math. Intel. 32(1), 26–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUNSWSydneyAustralia

Personalised recommendations