Universal hyperbolic geometry I: trigonometry
Original Paper
First Online:
- 430 Downloads
- 8 Citations
Abstract
Hyperbolic geometry is developed in a purely algebraic fashion from first principles, without a prior development of differential geometry. The natural connection with the geometry of Lorentz, Einstein and Minkowski comes from a projective point of view, with trigonometric laws that extend to ‘points at infinity’, here called ‘null points’, and beyond to ‘ideal points’ associated to a hyperboloid of one sheet. The theory works over a general field not of characteristic two, and the main laws can be viewed as deformations of those from planar rational trigonometry. There are many new features; this paper gives 92 foundational theorems.
Keywords
Hyperbolic geometry Projective geometry Rational trigonometry Relativistic geometry Null pointsMathematics Subject Classification (2000)
14N99 53A35 51F99Preview
Unable to display preview. Download preview PDF.
References
- 1.Artzy R.: Linear Geometry. Addison-Wesley, Reading, MA (1974)Google Scholar
- 2.Angel J.: Finite upper half planes over finite fields. Finite Fields Appl. 2, 62–86 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Beardon A.F.: The Geometry of Discrete Groups, GTM 91. Springer, New York (1983)CrossRefGoogle Scholar
- 4.Behnke, H., Bachmann, F., Fladt, K., Kunle, H. (eds): Fundamentals of Mathematics vol. 2 Geometry. MIT Press, Cambridge (1974)Google Scholar
- 5.Coxeter H.S.M.: Introduction to Geometry. Wiley, New York (1961)zbMATHGoogle Scholar
- 6.Fenchel W.: Elementary Geometry in Hyperbolic Space, Studies in Mathematics 11. Walter de Gruyter, Berlin (1989)CrossRefGoogle Scholar
- 7.Goh, S.: Chebyshev polynomials and spread polynomials, Honours Thesis. School of Mathematics, UNSW (2005)Google Scholar
- 8.Goh, S., Wildberger, N.J.: Spread polynomials, rotations and the butterfly effect. arXiv:0911.1025vl (2009)Google Scholar
- 9.Greenberg M.J.: Euclidean and Non-Euclidean Geometries: Development and History. W. H. Freeman, San Francisco (1972)Google Scholar
- 10.Gunn, C.: Geometry, Kinematics and Rigid Body Mechanics in Cayley–Klein Geometries. PhD thesis, Berlin (2011)Google Scholar
- 11.Hestenes D., Li H., Rockwood A.: A unified algebraic approach for classical geometries. In: Sommer, G. (eds) Geometric Computing with Clifford Algebra, pp. 3–27. Springer, Berlin (2001)Google Scholar
- 12.Katok S.: Fuchsian Groups, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)Google Scholar
- 13.Klein, F.: Vorlesungen über nicht-euklidische Geometrie. Springer, Berlin, reprinted 1968 (orig. 1928)Google Scholar
- 14.Klingenberg W.: Eine Begründung der hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Ramsay A., Richtmyer R.D.: Introduction to Hyperbolic Geometry. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
- 16.Richter-Gebert J.: Perspectives on Projective Geometry: A Guided Tour through Real and Complex Geometry. Springer, Heidelberg (2010)Google Scholar
- 17.Szmielew, W.: Some Metamathematical Problems Concerning Elementary Hyperbolic Geometry. In: Studies in Logic and the Foundations of Mathematics, vol. 27, pp. 30–52 (1959)Google Scholar
- 18.Soto-Andrade, J.: Geometrical Gel’fand models, tensor quotients, and Weil representations. In: Proc. Symp. Pure Math. vol. 47, Am. Math. Soc., Providence, pp. 305–316 (1987)Google Scholar
- 19.Sommerville D.M.Y.: The Elements of Non-Euclidean Geometry. G. Bell and Sons, London (1914)zbMATHGoogle Scholar
- 20.Terras A.: Fourier Analysis on Finite Groups and Applications, London Math. Soc. Student Texts 43. Cambridge University Press, Cambridge (1999)Google Scholar
- 21.Thurston W.P.: Threedimensional geometry and topology. In: Levy, S. (eds) Princeton mathematical series 35, vol. 1., Princeton University Press, Princeton NJ (1997)Google Scholar
- 22.Ungar, A.A.: Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry. In: Computers and Mathematics with Applications vol. 40, Issues 2–3, July–August 2000, pp. 313–332Google Scholar
- 23.Wildberger N.J.: Divine Proportions: Rational Trigonometry to Universal Geometry. Wild Egg Books, Sydney (2005)zbMATHGoogle Scholar
- 24.Wildberger N.J.: One dimensional metrical geometry. Geometriae Dedicata 128(1), 145–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Wildberger N.J.: Chromogeometry and Relativistic Conics. KoG 13, 43–50 (2009)MathSciNetzbMATHGoogle Scholar
- 26.Wildberger, N.J.: Universal affine and projective geometry. J. Geom (to appear)Google Scholar
- 27.Wildberger N.J.: A Rational Approach to Trigonometry. Math Horizons, 16–20 (Nov. 2007)Google Scholar
- 28.Wildberger N.J.: Universal hyperbolic geometry II: a pictorial overview. KoG 14, 3–24 (2010)MathSciNetzbMATHGoogle Scholar
- 29.Wildberger N.J.: Universal hyperbolic geometry III: first steps in projective triangle geometry. KoG 15, 25–49 (2011)MathSciNetzbMATHGoogle Scholar
- 30.Wildberger N.J.: Chromogeometry. Math. Intel. 32(1), 26–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2012